Page 82 - 《精细化工》2022年第8期
P. 82
·1582· 精细化工 FINE CHEMICALS 第 39 卷
无法满足工业化要求。有机-无机杂化材料兼具有机 membranes for separation of ethanol/water by eliminating surface
材料和无机材料的特性,在优先透过有机物渗透汽 Si-OH groups[J]. ACS Applied Materials & Interfaces, 2018, 10(4):
3175-3180.
化方面有着更好的前景。 [12] HAN G L (韩光鲁), CHEN Z (陈哲), FAN K Q (樊凯奇), et al.
膜的制备方法和改性是根据不同基材的理化性 Research progress of pervaporation membrane materials for separation
质决定的,已经过长期的优化和改进。应根据优先 of phenol/aniline from wastewater[J]. Journal of Light Industry (轻工
学报), 2019, 34(5): 68-77.
透过有机物渗透汽化膜的实际需求选择合适的制备 [13] LI P, CHEN H Z, CHUNG T S. The effects of substrate characteristics
和改性方法,并建立相关的数据库,为后续相关研 and pre-wetting agents on PAN-PDMS composite hollow fiber
membranes for CO 2/N 2 and O 2/N 2 separation[J]. Journal of Membrane
究提供依据。未来仍需积极探索具有明确层次结构
Science, 2013, 434(5): 18-25.
的膜材料和具有多功能化学基团的交联剂;同时研 [14] CLAES S, VANDEZANDE P, MULLENS S, et al. Preparation and
究创新性的制备方法和改性方法,亦可根据实际需 benchmarking of thin film supported PTMSP-silica pervaporation
membranes[J]. Journal of Membrane Science, 2012, 326: 27-35.
求结合多种改性方法联合改性,全面提高渗透汽化
[15] WANG H G, LI C C, XU Q, et al. Mass transport and pervaporation
膜的各方面性能。 recovery of aniline with high-purity from dilute aqueous solution by
此外,综合考虑各种分离技术的优缺点选择渗 PEBA/PVDF composite membranes[J]. Separation and Purification
Technology, 2021, 268: 118708.
透汽化技术与其他分离技术联用也是未来的发展方
[16] PAN Y, HANG Y T, ZHAO X H, et al. Optimizing separation
向;渗透汽化膜的发展还应致力于与其他学科领域 performance and interfacial adhesion of PDMS/PVDF composite
相结合,如借助软件模拟工具分析研究膜组件与待 membranes for butanol recovery from aqueous solution[J]. Journal of
Membrane Science, 2019,579: 210-218.
分离组分间的作用机理,为实际研究提供理论依据。
[17] GAO L, ALBERTO M, GORGOJO P, et al. High-flux PIM-1/PVDF
thin film composite membranes for 1-butanol/water pervaporation[J].
参考文献: Journal of Membrane Science, 2017, 529: 207-214.
[1] ALI N, BILAL M, KHAN A, et al. Understanding the hierarchical [18] ŽÁK M, KLEPIC M, ŠTASTNÁ L Č, et al. Selective removal of
assemblies and oil/water separation applications of metal-organic butanol from aqueous solution by pervaporation with a PIM-1
frameworks[J]. Journal of Molecular Liquids, 2020, 318: 114273. membrane and membrane aging[J]. Separation & Purification
[2] DÍAZ V H G, TOST G O. Butanol production from lignocellulose by Technology, 2015, 151: 108-114.
simultaneous fermentation, saccharification, and pervaporation or [19] HE X P, WANG T, HUANG J H, et al. Fabrication and
vacuum evaporation[J]. Bioresource Technology, 2016, 218: 174-182. characterization of superhydrophobic PDMS composite membranes
[3] DENG Y Y, WU Y N, CHEN G Q, et al. Metal-organic framework for efficient ethanol recovery via pervaporation[J]. Separation and
membranes: Recent development in the synthesis strategies and their Purification Technology, 2020, 241: 116675.
application in oil-water separation[J]. Chemical Engineering Journal, [20] LEÓN J A, FONTALVO J. PDMS modified membranes by 1-
2021, 405: 127004. dodecanol and its effect on ethanol removal by pervaporation[J].
[4] CHENG H (程浩), ZHANG G C (张国才). Recent progress in Separation and Purification Technology, 2019, 210: 364-370.
pervaporation membrane separation technology[J]. Application of [21] ZHOU H L, ZHANG J Q, WAN Y H, et al. Fabrication of high
Chemical (应用化工), 2021, 50(12): 3489-3493. silicalite-1 content filled PDMS thin composite pervaporation
[5] DONG D M (董道敏), LIU B (刘宾), CHAI Y M (柴永明), et al. membrane for the separation of ethanol from aqueous solutions[J].
Silicalite-1 molecular sieve membrane coated porous Al 2O 3 microspheres Journal of Membrane Science, 2017, 524: 1-11.
were prepared by dynamic hydrothermal method[J]. Chemical [22] LIU G P, JIN W Q. Pervaporation membrane materials: Recent trends
Industry and Engineering Progress ( 化工进展 ), 2018, 37(10): and perspectives[J]. Journal of Membrane Science, 2021, 636:
3943-3948. 119557.
[6] LIU G D (刘国东). Surface acidity and catalytic properties of nano- [23] LIU X L, LI Y S, ZHU G Q, et al. An organophilic pervaporation
silicalite-1 zeolite modified by ZnO[D]. Dalian:Dalian University of membrane derived from metal-organic framework nanoparticles for
Technology (大连理工大学), 2019. efficient recovery of bio-alcohols[J]. Angewandte Chemie International
[7] ZHAO W B (赵文博), SHEN R S (沈润生), FU W Q (傅雯倩), et al. Edition, 2011, 123(45): 10922.
Selective hydrogenation of cinnamaldehyde in porous silicalite-1 [24] HUANG K, LI Q, LIU G, et al. A ZIF-71 hollow fiber membrane
zeolite supported by Ni[J]. Speciality Petrochemicals (精细石油化 fabricated by contra-diffusion[J]. ACS Applied Materials &
工), 2019, 36(1): 40-46. Interfaces, 2015, 7(30): 16157-16160.
[8] UENO K, NEGISHI H, OKUNO T, et al. High-performance silicalite- [25] PAN Y, YU X. Preparation of zeolitic imidazolate framework-91 and
1 membranes on porous tubular silica supports for separation of its modeling for pervaporation separation of water/ethanol
ethanol/water mixtures[J]. Separation and Purification Technology, mixtures[J]. Separation and Purification Technology, 2019, 237:
2017, 187: 343-354. 116330.
[9] FAN L H (樊丽虹), LI Y (李裕), SONG Y (宋尧), et al. Time control [26] MIYAMOT M, HPRI K, GOSHIMA T, et al. An organoselective
of in situ hydrothermal synthesis of B-axis silicalite-1 and separation zirconium-based metal-organic-framework UiO-66 membrane for
of ethanol-water system[J]. Journal of North University of China (中 pervaporation[J]. European Journal of Inorganic Chemistry, 2017, 14:
北大学学报), 2018, 39(3): 316-321, 349. 2094-2099.
[10] HIETAHARJU J, KANGAS J, YANG M, et al. Negative impact of [27] ZHANG G J, LI J, WANG N X, et al. Enhanced flux of
butyric acid on butanol recovery by pervaporation with a silicalite-1 polydimethylsiloxane membrane for ethanol permselective pervaporation
membrane from ABE fermentation[J]. Separation and Purification via incorporation of MIL-53 particles[J]. Journal of Membrane
Technology, 2020, 245: 16883. Science, 2015, 492: 322-330.
[11] WU Z Q, ZHANG C, LI P, et al. Enhanced stability of MFI zeolite [28] LIU Q, LI Y K, LI Q Q, et al. Mixed-matrix hollow fiber composite