Page 27 - 《精细化工》2022年第9期
P. 27

第 9 期                   冯亚青,等:  石墨炔及其衍生物在钙钛矿太阳能电池中的应用                                   ·1745·


            艺应用到 PSCs 中将是未来重要的研究方向。                                heterojunctionperovskite solar cells[J]. Nano Letter, 2015, 15(4):
                 整体而言,作为一种新颖的碳纳米材料,GD                              2756-2762.
                                                               [19]  LI  M, WANG Z K,  KANG T, et  al.  Graphdiyne-modified cross-
            及其衍生物具有优异的导电性和空穴迁移率,可以                                 linkable fullerene as an efficient electron-transporting layer in
            直接作为空穴传输层或者电极,这将有效简化电池                                 organometal halide perovskite solar cells[J]. Nano Energy, 2018, 43:
                                                                   47-54.
            制备过程和降低电池制备成本,表明 GD 及其衍生                           [20]  BI F, YAM  C  Y, ZHAO  C, et al. Enhanced photocurrent in
            物在 PSCs 领域具有广阔的应用前景。                                   heterostructures formed between CH 3NH 3PbI 3  perovskite films and
                                                                   graphdiyne[J]. Physical Chemistry Chemical Physics, 2020, 22(11):
            参考文献:                                                  6239-6246.
                                                               [21]  HADADIAN M, SMÅTT J H, CORREA-BAENA J P. The role of
            [1]   WANG B, IOCOZZIA J, ZHANG  M, et  al. The charge  carrier   carbon-based materials in enhancing the stability of perovskite solar
                 dynamics, efficiency and stability of two-dimensional material-based   cells[J]. Energy Environmental Science, 2020, 13(5): 1377-1407.
                 perovskite solar cells[J]. Chem Soc Rev, 2019, 48(18): 4854-4891.   [22]  CHEN S, SHI G Q. Two-dimensional materials for halide perovskite-
            [2]   HE R, HUANG X Z, CHEE M, et al. Carbon-based perovskite solar   based optoelectronic devices[J]. Advantage Materials, 2017, 29(24):
                 cells: From single-junction to modules[J]. Carbon Energy, 2019, 1(1):
                                                                   1605448.
                 109-123.
                                                               [23]  WANG J X (王军霞), BI Z N (毕卓能), LIANG Z R (梁柱荣), et al.
            [3]   PARK N G. Research direction toward scalable, stable,  and high
                                                                   Progress of new carbon material research in perovskite solar cells[J].
                 efficiency perovskite solar cells[J]. Advanced Energy  Materials,   Acta Physica Sinica (物理学报), 2016, 65(5): 058801.
                 2019, 10(13): 1903106.                        [24]  ENYASHIN A N, IVANOVSKII A L. Grapheneallotropes[J]. Physica
            [4]   GREEN M A, DUNLOP E D, LEVI D H, et al. Solar cell efficiency
                                                                   Status Solidi, 2011, 248(8): 1879-1883.
                 tables[J]. Progress in Photovoltaics: Research and Applications,
                                                               [25]  LU X L, HAN Y Y, LU T B. Structure characterization and application
                 2019, 27(7): 565-575.
                                                                   of graphdiyne in photocatalytic  and  electrocatalyticreactions[J].  Acta
            [5]   PARK S M, ABTAHI A, BOEHM A  M, et al. Surface ligands for   Physico Chimica Sinica, 2018, 34(9): 1014-1028.
                 methylammonium lead iodide films: Surface coverage,  energetics,   [26]  WU L M, DONG  Y  Z,  ZHAO J L, et  al. Kerr nonlinearity in 2D
                 and photovoltaic performance[J]. ACS Energy Letters,  2020, 5(3):   graphdiyne for passive photonic diodes[J]. Advanced Materials,
                 799-806.                                          2019, 31(14): 1807981.
            [6]   KOJIMA A,  TESHIMA K, SHIRAI  Y, et  al.  Organometal halide   [27]  ZHAO Y S, YANG N L, YAO H Y, et al. Stereodefinedcodoping of
                 perovskites as visible-light sensitizers for photovoltaic cells[J].   sp-N and S atoms in few-layer graphdiyne for oxygen evolution
                 Journal of the American Chemical Society, 2009, 131: 6050-6051.   reaction[J]. Journal of the American Chemical Society, 2019, 141(18):
            [7]   BAI S, DA P M,  LI C, et al. Planar perovskite solar cells with   7240-7244.
                 long-term stability using ionic liquid additives[J]. Nature, 2019,   [28]  YAN H L, GUO  S Y,  WU F, et al. Carbon atom hybridization
                 571(7764): 245-250.                               matters: Ultrafast humidity response of  graphdiyneoxides[J].
            [8]   LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar   Angewandte Chemie, 2018, 57(15): 3922-3926.
                 heterojunctionperovskite solar cells by vapour deposition[J]. Nature,   [29]  LIN T, WANG J  Z. Applications  of  graphdiyne on  optoelectronic
                 2013, 501(7467): 395-398.                         devices[J]. ACS Applied Materials Interfaces, 2019, 11(3): 2638-2646.
            [9]   KHENKIN M V, KATZ E A, ABATE A, et al. Consensus statement   [30]  ZHANG J B (张嘉宾), XU J L (徐加良), ZHANG B (张宝), et al.
                 for  stability assessment and reporting for  perovskitephotovoltaics   Application of graphyne and modified graphyne in the optoelectronic
                 based on ISOS procedures[J]. Nature Energy, 2020, 5(1): 35-49.   field[J]. Acta Polymerica Sinica (高分子学报), 2017, 50(12): 1239-
            [10]  MIN H, LEE D Y, KIM J, et al.Perovskite solar cells with atomically   1252.
                 coherent interlayers on SnO 2 electrodes[J]. Nature, 2021, 598(7881):   [31]  KIM B G, CHOI H J. Graphyne: Hexagonal network of carbon with
                 444-450.                                          versatile Dirac cones[J]. Physical Review B, 2012, 86(11): 115435.
            [11]  ZHANG Y (张钰), ZHOU H P (周欢萍). Intrinsic stability of   [32]  QI H T, YU P, WANG Y X, et al. Graphdiyne oxides as excellent
                 organic-inorganic hybrid perovskite[J]. Acta Physica Sinica (物理学  substrate for electroless deposition of Pd clusters with high catalytic
                 报), 2019, 68(15): 158804.                         activity[J]. Journal of the American Chemical Society, 2015, 137(16):
            [12]  BAI Y, MENG X Y, YANG S. Interface  engineering for highly   5260-5263.
                 efficient and stable planar p-i-n perovskite solar cells[J]. Advanced   [33]  LI X D,  WANG N, HE J J, et  al. One-step preparation  of highly
                 Energy Materials, 2018, 8(5): 1701883.            durable superhydrophobic carbon nanothornarrays[J]. Small, 2020,
            [13]  JIANG Q, ZHAO  Y, ZHANG X W, et  al. Surface passivation of   16(26): 1907013.
                 perovskite film for efficient solar cells[J]. Nature Photonics, 2019,   [34]  GUO  Y,  XUE Y B,  LI C B, et  al. Electronic properties of the
                 13(7): 460-466.                                   graphdiyne/CH 3NH 3PbI 3 interface: A first-principles study[J]. Physica
            [14]  YANG X Y, FU  Y Q, SU R, et al. Superior carrier lifetimes   Status Solidi-Rapid Research Letters, 2019, 14(1): 1900544.
                 exceeding  6  micros in polycrystalline halide perovskites[J].   [35]  LI J S, JIU T G, CHEN S Q, et  al.  Graphdiyne as a  host active
                 Advanced Materials, 2020, 32(39): 2002585.        material for perovskite solar cell application[J]. Nano Letters, 2018,
            [15]  CHEN Y H, TAN S Q, LI N X, et al. Self-elimination of intrinsic   18(11): 6941-6947.
                 defects improves the low-temperature performance of perovskite   [36]  LI H S, ZHANG R, LI Y S, et al.  Graphdiyne-based bulk
                 photovoltaics[J]. Joule, 2020, 4(9): 1961-1976.   heterojunction for efficient and moisture-stable planar perovskite
            [16]  LI L, ZUO Z C, WANG F, et al. In situ coating graphdiyne for high-   solar cells[J]. Advanced Energy Materials, 2018, 8(30): 1802012.
                 energy-density and stable organic cathodes[J]. Advanced Materials,   [37]  ZHANG J J, TIAN J W, FAN J J, et al. Graphdiyne: A brilliant hole
                 2020, 32(14): 2000140.                            accumulator for stable and efficient planar perovskite solar cells[J].
            [17]  SAKAMOTO R, FUKUI N, MAEDA H, et al. The accelerating   Small, 2020, 16(13): 1907290.
                 world of graphdiynes[J]. Advanced Materials, 2019, 31(42): 1804211.   [38]  ZHANG X S, WANG Q, JIN Z W, et al. Graphdiyne quantum dots
            [18]  KUANG C,  TANG G, JIU  T G,  et al. Highly efficient electron   for much improved stability and efficiency of perovskite solar
                 transport obtained  by doping PCBM with graphdiyne in planar-   cells[J]. Advanced Materials Interfaces, 2018, 5(2): 1701117.
   22   23   24   25   26   27   28   29   30   31   32