Page 27 - 《精细化工》2022年第9期
P. 27
第 9 期 冯亚青,等: 石墨炔及其衍生物在钙钛矿太阳能电池中的应用 ·1745·
艺应用到 PSCs 中将是未来重要的研究方向。 heterojunctionperovskite solar cells[J]. Nano Letter, 2015, 15(4):
整体而言,作为一种新颖的碳纳米材料,GD 2756-2762.
[19] LI M, WANG Z K, KANG T, et al. Graphdiyne-modified cross-
及其衍生物具有优异的导电性和空穴迁移率,可以 linkable fullerene as an efficient electron-transporting layer in
直接作为空穴传输层或者电极,这将有效简化电池 organometal halide perovskite solar cells[J]. Nano Energy, 2018, 43:
47-54.
制备过程和降低电池制备成本,表明 GD 及其衍生 [20] BI F, YAM C Y, ZHAO C, et al. Enhanced photocurrent in
物在 PSCs 领域具有广阔的应用前景。 heterostructures formed between CH 3NH 3PbI 3 perovskite films and
graphdiyne[J]. Physical Chemistry Chemical Physics, 2020, 22(11):
参考文献: 6239-6246.
[21] HADADIAN M, SMÅTT J H, CORREA-BAENA J P. The role of
[1] WANG B, IOCOZZIA J, ZHANG M, et al. The charge carrier carbon-based materials in enhancing the stability of perovskite solar
dynamics, efficiency and stability of two-dimensional material-based cells[J]. Energy Environmental Science, 2020, 13(5): 1377-1407.
perovskite solar cells[J]. Chem Soc Rev, 2019, 48(18): 4854-4891. [22] CHEN S, SHI G Q. Two-dimensional materials for halide perovskite-
[2] HE R, HUANG X Z, CHEE M, et al. Carbon-based perovskite solar based optoelectronic devices[J]. Advantage Materials, 2017, 29(24):
cells: From single-junction to modules[J]. Carbon Energy, 2019, 1(1):
1605448.
109-123.
[23] WANG J X (王军霞), BI Z N (毕卓能), LIANG Z R (梁柱荣), et al.
[3] PARK N G. Research direction toward scalable, stable, and high
Progress of new carbon material research in perovskite solar cells[J].
efficiency perovskite solar cells[J]. Advanced Energy Materials, Acta Physica Sinica (物理学报), 2016, 65(5): 058801.
2019, 10(13): 1903106. [24] ENYASHIN A N, IVANOVSKII A L. Grapheneallotropes[J]. Physica
[4] GREEN M A, DUNLOP E D, LEVI D H, et al. Solar cell efficiency
Status Solidi, 2011, 248(8): 1879-1883.
tables[J]. Progress in Photovoltaics: Research and Applications,
[25] LU X L, HAN Y Y, LU T B. Structure characterization and application
2019, 27(7): 565-575.
of graphdiyne in photocatalytic and electrocatalyticreactions[J]. Acta
[5] PARK S M, ABTAHI A, BOEHM A M, et al. Surface ligands for Physico Chimica Sinica, 2018, 34(9): 1014-1028.
methylammonium lead iodide films: Surface coverage, energetics, [26] WU L M, DONG Y Z, ZHAO J L, et al. Kerr nonlinearity in 2D
and photovoltaic performance[J]. ACS Energy Letters, 2020, 5(3): graphdiyne for passive photonic diodes[J]. Advanced Materials,
799-806. 2019, 31(14): 1807981.
[6] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide [27] ZHAO Y S, YANG N L, YAO H Y, et al. Stereodefinedcodoping of
perovskites as visible-light sensitizers for photovoltaic cells[J]. sp-N and S atoms in few-layer graphdiyne for oxygen evolution
Journal of the American Chemical Society, 2009, 131: 6050-6051. reaction[J]. Journal of the American Chemical Society, 2019, 141(18):
[7] BAI S, DA P M, LI C, et al. Planar perovskite solar cells with 7240-7244.
long-term stability using ionic liquid additives[J]. Nature, 2019, [28] YAN H L, GUO S Y, WU F, et al. Carbon atom hybridization
571(7764): 245-250. matters: Ultrafast humidity response of graphdiyneoxides[J].
[8] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar Angewandte Chemie, 2018, 57(15): 3922-3926.
heterojunctionperovskite solar cells by vapour deposition[J]. Nature, [29] LIN T, WANG J Z. Applications of graphdiyne on optoelectronic
2013, 501(7467): 395-398. devices[J]. ACS Applied Materials Interfaces, 2019, 11(3): 2638-2646.
[9] KHENKIN M V, KATZ E A, ABATE A, et al. Consensus statement [30] ZHANG J B (张嘉宾), XU J L (徐加良), ZHANG B (张宝), et al.
for stability assessment and reporting for perovskitephotovoltaics Application of graphyne and modified graphyne in the optoelectronic
based on ISOS procedures[J]. Nature Energy, 2020, 5(1): 35-49. field[J]. Acta Polymerica Sinica (高分子学报), 2017, 50(12): 1239-
[10] MIN H, LEE D Y, KIM J, et al.Perovskite solar cells with atomically 1252.
coherent interlayers on SnO 2 electrodes[J]. Nature, 2021, 598(7881): [31] KIM B G, CHOI H J. Graphyne: Hexagonal network of carbon with
444-450. versatile Dirac cones[J]. Physical Review B, 2012, 86(11): 115435.
[11] ZHANG Y (张钰), ZHOU H P (周欢萍). Intrinsic stability of [32] QI H T, YU P, WANG Y X, et al. Graphdiyne oxides as excellent
organic-inorganic hybrid perovskite[J]. Acta Physica Sinica (物理学 substrate for electroless deposition of Pd clusters with high catalytic
报), 2019, 68(15): 158804. activity[J]. Journal of the American Chemical Society, 2015, 137(16):
[12] BAI Y, MENG X Y, YANG S. Interface engineering for highly 5260-5263.
efficient and stable planar p-i-n perovskite solar cells[J]. Advanced [33] LI X D, WANG N, HE J J, et al. One-step preparation of highly
Energy Materials, 2018, 8(5): 1701883. durable superhydrophobic carbon nanothornarrays[J]. Small, 2020,
[13] JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of 16(26): 1907013.
perovskite film for efficient solar cells[J]. Nature Photonics, 2019, [34] GUO Y, XUE Y B, LI C B, et al. Electronic properties of the
13(7): 460-466. graphdiyne/CH 3NH 3PbI 3 interface: A first-principles study[J]. Physica
[14] YANG X Y, FU Y Q, SU R, et al. Superior carrier lifetimes Status Solidi-Rapid Research Letters, 2019, 14(1): 1900544.
exceeding 6 micros in polycrystalline halide perovskites[J]. [35] LI J S, JIU T G, CHEN S Q, et al. Graphdiyne as a host active
Advanced Materials, 2020, 32(39): 2002585. material for perovskite solar cell application[J]. Nano Letters, 2018,
[15] CHEN Y H, TAN S Q, LI N X, et al. Self-elimination of intrinsic 18(11): 6941-6947.
defects improves the low-temperature performance of perovskite [36] LI H S, ZHANG R, LI Y S, et al. Graphdiyne-based bulk
photovoltaics[J]. Joule, 2020, 4(9): 1961-1976. heterojunction for efficient and moisture-stable planar perovskite
[16] LI L, ZUO Z C, WANG F, et al. In situ coating graphdiyne for high- solar cells[J]. Advanced Energy Materials, 2018, 8(30): 1802012.
energy-density and stable organic cathodes[J]. Advanced Materials, [37] ZHANG J J, TIAN J W, FAN J J, et al. Graphdiyne: A brilliant hole
2020, 32(14): 2000140. accumulator for stable and efficient planar perovskite solar cells[J].
[17] SAKAMOTO R, FUKUI N, MAEDA H, et al. The accelerating Small, 2020, 16(13): 1907290.
world of graphdiynes[J]. Advanced Materials, 2019, 31(42): 1804211. [38] ZHANG X S, WANG Q, JIN Z W, et al. Graphdiyne quantum dots
[18] KUANG C, TANG G, JIU T G, et al. Highly efficient electron for much improved stability and efficiency of perovskite solar
transport obtained by doping PCBM with graphdiyne in planar- cells[J]. Advanced Materials Interfaces, 2018, 5(2): 1701117.