Page 28 - 《精细化工》2022年第9期
P. 28
·1746· 精细化工 FINE CHEMICALS 第 39 卷
[39] CHEN S Q, PAN Q Y, LI J S, et al. Grain boundary passivation with [47] LI J S, JIU T G, DUAN C H, et al. Improved electron transport in
triazine-graphdiyne to improve perovskite solar cell performance[J]. MAPbI 3 perovskite solar cells based on dual doping graphdiyne[J].
Science China Materials, 2020, 63(12): 2465-2476. Nano Energy, 2018, 46: 331-337.
[40] HUANG H, LIU B, WANG D, et al. Different mechanisms of [48] LIU C Y, ZHANG D Z, LI Z W, et al. Incorporating a polar molecule
improving CH 3NH 3PbI 3 perovskite solar cells brought by fluorinated to passivate defects for perovskite solar cells[J]. Solar RRL, 2020,
or nitrogen doped graphdiyne[J]. Nano Research, 2021, 15(1): 573- 4(3): 1900489.
580. [49] ACIK M, DARLING S B. Graphene in perovskite solar cells: Device
[41] ZHANG W H, XIONG J, JIANG L, et al. Thermal stability- design, characterization and implementation[J]. Journal of Materials
enhanced and high-efficiency planar perovskite solar cells with Chemistry A, 2016, 4(17): 6185-6235.
interface passivation[J]. ACS Applied Materials Interfaces, 2017, [50] ZHANG S C, SI H N, FAN W Q, et al.Graphdiyne: Bridging SnO 2
9(44): 38467-38476. and perovskite in planar solar cells[J]. Angewandte Chemie, 2020,
[42] JUNG E H, CHEN B, BERTENS K, et al. Bifunctional surface 59(28): 11573-11582.
engineering on SnO 2 reduces energy loss in perovskite solar cells[J]. [51] CHEN Y H, LI J F, WANG F H, et al. Chemical modification:
ACS Energy Letters, 2020, 5(9): 2796-2801. Toward solubility and processability of graphdiyne[J]. Nano Energy,
[43] WANG H, LI F B, WANG P, et al. Chlorinated fullerene dimers for 2019, 64: 103932.
interfacial engineering toward stable planar perovskite solar cells [52] XIAO J Y, SHI J J, LIU H B, et al. Efficient CH 3NH 3 PbI 3 perovskite
with 22.3% efficiency[J]. Advanced Energy Materials, 2020, 10(21): solar cells based on graphdiyne (GD)-modified P3HT hole-transporting
2000615. material[J]. Advanced Energy Materials, 2015, 5(8): 1401943.
[44] ZHAO P (赵芃), JIE J R (接鲸瑞), GUAN S (关硕), et al. Black [53] LI J S, ZHAO M, ZHAO C J, et al. Graphdiyne-doped P3CT-K as an
porphyrin doped-free hole transport material for perovskitesolar efficient hole-transport layer for MAPbI 3 perovskite solar cells[J].
cells[J]. Fine Chemicals (精细化工), 2021, 38(7): 1375-1379. ACS Applied Materials & Interfaces, 2018, 11(3): 2626-2631.
[45] LI C L (历成龙), JIANG Y F (蒋艺斐), ZHANG B (张宝), et al. [54] LUAN Y G, WANG F H, ZHUANG J, et al. Dual-function interface
Self-assembly and photoelectric properties of an triarylamine- engineering for efficient perovskite solar cells[J]. EcoMat, 2021,
1,3,5-benzenetricarboxamide derivative[J]. Fine Chemicals (精细化 3(2): 12092.
工), 2018, 36(4): 731-735. [55] TANG J, ZHAO M, CAI X, et al. Graphdiyne oxide modified niox
[46] LIU Y, HU Y C, ZHANG X Y, et al. Inhibited aggregation of lithium for enhanced charge extraction in inverted planar MAPbI 3 perovskite
salt in spiro-OMeTAD toward highly efficient perovskite solar cells[J]. solar cells[J]. Chemical Research in Chinese Universities, 2021, 37:
Nano Energy, 2020, 70: 104483. 1309-1316.
(上接第 1738 页) kaolin addition on the dynamics of oxygen mass transport in
[37] MOLLER M W, KUNZ D A, LUNKENBEIN T. UV-cured, flexible, polyvinyl alcohol dispersion coatings[J]. Coating, 2015, 30(3): 385-
and transparent nanocomposite coating with remarkable oxygen 392.
barrier[J]. Advance Materials, 2012, 24: 2142-2147. [49] ECKERT A, RUDOLPH T, GUO J Q, et al. Exceptionally ductile
[38] HOLDER K M, SMITH R J, GRUNLAN J C. A review of flame and tough biomimetic artificial nacre with gas barrier function[J].
retardant nanocoatings prepared using layer-by-layer assembly of Advanced Materials, 2018, 30(32): 1802477.
polyelectrolytes[J]. Journal of Materials Science, 2017, 52(22): [50] YOOB M, SHIN H J, YOON H W, et al. Graphene and graphene
12923-12959. oxide and their uses in barrier polymers[J]. Journal of Applied
[39] SONG Y X, GERRINGER J, QIN S, et al. High oxygen barrier thin Polymer Science, 2014, 131(1): 39628.
film from aqueous polymer/clay slurry[J]. Industrial & Engineering [51] SELLAM C, ZHAI Z, ZAHABI H, et al. High mechanical
Chemistry Research, 2018, 57(20): 6904-6909. reinforcing efficiency of layered poly(vinyl alcohol)-graphene oxide
[40] HUANG H D, REN P G, CHEN J, et al. High barrier graphene oxide nanocomposites[J]. Nanocomposites, 2015, 1: 89-95.
nanosheet/poly(vinyl alcohol) nanocomposite films[J]. Journal of [52] LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion
Membrane Science, 2012, 409/410: 156-163. of graphene into poly(vinyl alcohol) and effective reinforcement of
[41] CHEN J T, FU Y J, AN Q F, et al. Enhancing polymer/graphene their nanocomposites[J]. Advanced Functional Materials, 2009,
oxide gas barrier film properties by introducing new crystals[J]. 19(14): 1-6.
Carbon, 2014, 75: 443-451. [53] KUILA T, BOSE S, MISHRA A K, et al. Chemical functionalization
[42] MENG X W, QI P, SUN J, et al. Fabrication of transparent of graphene and its applications[J]. Progress Material Science, 2012,
clay-polymer hybrid coatings on PET film to enhance flame 57: 1061-1105.
retardancy and oxygen barrier properties[J]. Progress in Organic [54] SALAVAGIONE H J, MARTINEZ G, ELLIS G. Recent advances in
Coatings, 2020, 147: 105788. the covalent modification of graphene with polymers[J].
[43] PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultra strong Macromolecular Rapid Communications, 2012, 32: 1771-1789.
and stiff layered polymer nanocomposites[J]. Science, 2007, 318: [55] CHENG H K, SAHOO N G, TAN Y P, et al. Poly(vinyl alcohol)
80-83. nanocomposites filled with poly(vinyl alcohol)-grafted graphene
[44] LUCKHAM P F, ROSSI S. The colloidal and rheological properties oxide[J]. ACS Appl Mater Interfaces, 2012, 4: 2387-2394.
of bentonite suspensions[J]. Advances in Colloid and Interface [56] CANO M, KHAN U, SAIUSBURY T, et al. Improving the
Science, 1999, 82: 43-92. mechanical properties of graphene oxide based materials by covalent
[45] GREENLAND D J. Adsorption of polyvinyl alcohols by attachment of polymer chains[J]. Carbon, 2013, 52: 363-371.
montmorillonite[J]. Journal of Colloid Science, 1963, 18: 647-664. [57] HWANG S H, KANG D, RUOFFRS, SHIN H S, et al. Poly(vinyl
[46] SUN L, DING F C. Multi-functional high performance nanocoatings alcohol) reinforced and toughened with poly(dopamine)-treated
from a facile co-assembly process: US0315404A1[P]. 2015-11-05. graphene oxide, and its use for humidity sensing[J]. ACS Nano, 2014,
[47] NYFLFLÖTT Å, MOONS E, BONNERUP C, et al. The influence of 8: 6739-6747.
clay orientation and crystallinity on oxygen permeation in dispersion [58] SHAO L S, LI J J, GUANG Y, et al. PVA/polyethyleneimine-
barrier coatings[J]. Applied Clay Science, 2016, 126: 7-24. functionalized graphene composites with optimized properties[J].
[48] NYFLFLÖTT Å, AXRUP L, CARLSSON G, et al. Influence of Materials & Design, 2016, 99: 235-242.