Page 28 - 《精细化工》2022年第9期
P. 28

·1746·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [39]  CHEN S Q, PAN Q Y, LI J S, et al. Grain boundary passivation with   [47]  LI J S, JIU T G, DUAN C H, et al. Improved electron transport in
                 triazine-graphdiyne to improve perovskite solar cell performance[J].   MAPbI 3  perovskite solar cells based on dual doping graphdiyne[J].
                 Science China Materials, 2020, 63(12): 2465-2476.   Nano Energy, 2018, 46: 331-337.
            [40]  HUANG  H, LIU  B, WANG D, et  al. Different mechanisms of   [48]  LIU C Y, ZHANG D Z, LI Z W, et al. Incorporating a polar molecule
                 improving CH 3NH 3PbI 3 perovskite solar cells brought by fluorinated   to passivate defects for  perovskite solar cells[J]. Solar RRL, 2020,
                 or nitrogen doped graphdiyne[J]. Nano Research, 2021, 15(1): 573-   4(3): 1900489.
                 580.                                          [49]  ACIK M, DARLING S B. Graphene in perovskite solar cells: Device
            [41]  ZHANG  W  H, XIONG J, JIANG  L, et  al. Thermal  stability-   design, characterization and implementation[J]. Journal of Materials
                 enhanced and high-efficiency planar perovskite solar cells with   Chemistry A, 2016, 4(17): 6185-6235.
                 interface passivation[J]. ACS Applied Materials Interfaces, 2017,   [50]  ZHANG S C, SI H N, FAN W Q, et al.Graphdiyne: Bridging SnO 2
                 9(44): 38467-38476.                               and perovskite in planar solar cells[J]. Angewandte Chemie, 2020,
            [42]  JUNG  E H, CHEN  B, BERTENS K, et al.  Bifunctional surface   59(28): 11573-11582.
                 engineering on SnO 2 reduces energy loss in perovskite solar cells[J].   [51]  CHEN Y  H,  LI J F, WANG F  H, et  al. Chemical  modification:
                 ACS Energy Letters, 2020, 5(9): 2796-2801.        Toward solubility and processability of graphdiyne[J]. Nano Energy,
            [43]  WANG H, LI F B, WANG P, et al. Chlorinated fullerene dimers for   2019, 64: 103932.
                 interfacial engineering toward stable planar perovskite solar cells   [52]  XIAO J Y, SHI J J, LIU H B, et al. Efficient CH 3NH 3 PbI 3 perovskite
                 with 22.3% efficiency[J]. Advanced Energy Materials, 2020, 10(21):   solar cells based on graphdiyne (GD)-modified P3HT hole-transporting
                 2000615.                                          material[J]. Advanced Energy Materials, 2015, 5(8): 1401943.
            [44]  ZHAO P (赵芃), JIE J  R (接鲸瑞), GUAN S (关硕), et  al. Black   [53]  LI J S, ZHAO M, ZHAO C J, et al. Graphdiyne-doped P3CT-K as an
                 porphyrin doped-free hole transport material for perovskitesolar   efficient hole-transport layer for MAPbI 3 perovskite solar cells[J].
                 cells[J]. Fine Chemicals (精细化工), 2021, 38(7): 1375-1379.   ACS Applied Materials & Interfaces, 2018, 11(3): 2626-2631.
            [45]  LI C  L (历成龙), JIANG Y F (蒋艺斐), ZHANG B (张宝), et al.   [54]  LUAN Y G, WANG F H, ZHUANG J, et al. Dual-function interface
                 Self-assembly and photoelectric properties of an triarylamine-   engineering for efficient perovskite solar cells[J]. EcoMat, 2021,
                 1,3,5-benzenetricarboxamide derivative[J]. Fine Chemicals (精细化  3(2): 12092.
                 工), 2018, 36(4): 731-735.                     [55]  TANG J, ZHAO M, CAI X, et al. Graphdiyne oxide modified niox
            [46]  LIU Y, HU Y C, ZHANG X Y, et al. Inhibited aggregation of lithium   for enhanced charge extraction in inverted planar MAPbI 3 perovskite
                 salt in spiro-OMeTAD toward highly efficient perovskite solar cells[J].   solar cells[J]. Chemical Research in Chinese Universities, 2021, 37:
                 Nano Energy, 2020, 70: 104483.                    1309-1316.


            (上接第 1738 页)                                           kaolin addition  on the dynamics of oxygen mass transport in
            [37]  MOLLER M W, KUNZ D A, LUNKENBEIN T. UV-cured, flexible,   polyvinyl alcohol dispersion coatings[J]. Coating, 2015, 30(3): 385-
                 and transparent nanocomposite coating with remarkable oxygen   392.
                 barrier[J]. Advance Materials, 2012, 24: 2142-2147.     [49]  ECKERT A, RUDOLPH T, GUO J Q, et al. Exceptionally ductile
            [38]  HOLDER K M, SMITH R J, GRUNLAN J  C. A review of flame   and tough  biomimetic artificial nacre with gas barrier function[J].
                 retardant nanocoatings prepared using layer-by-layer  assembly of   Advanced Materials, 2018, 30(32): 1802477.
                 polyelectrolytes[J]. Journal of Materials Science, 2017, 52(22):   [50]  YOOB M, SHIN  H J, YOON H W,  et al. Graphene and graphene
                 12923-12959.                                      oxide and their uses in barrier polymers[J]. Journal of Applied
            [39]  SONG Y X, GERRINGER J, QIN S, et al. High oxygen barrier thin   Polymer Science, 2014, 131(1): 39628.
                 film from aqueous polymer/clay slurry[J]. Industrial & Engineering   [51]  SELLAM C, ZHAI Z, ZAHABI  H,  et al. High  mechanical
                 Chemistry Research, 2018, 57(20): 6904-6909.      reinforcing efficiency of layered poly(vinyl alcohol)-graphene oxide
            [40]  HUANG H D, REN P G, CHEN J, et al. High barrier graphene oxide   nanocomposites[J]. Nanocomposites, 2015, 1: 89-95.
                 nanosheet/poly(vinyl alcohol) nanocomposite films[J]. Journal of   [52]  LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion
                 Membrane Science, 2012, 409/410: 156-163.         of graphene into poly(vinyl alcohol) and effective reinforcement of
            [41]  CHEN J T, FU Y  J, AN Q F, et al. Enhancing  polymer/graphene   their nanocomposites[J]. Advanced Functional Materials, 2009,
                 oxide gas barrier film properties by introducing new crystals[J].   19(14): 1-6.
                 Carbon, 2014, 75: 443-451.                    [53]  KUILA T, BOSE S, MISHRA A K, et al. Chemical functionalization
            [42]  MENG  X W, QI P, SUN J,  et al. Fabrication  of transparent   of graphene and its applications[J]. Progress Material Science, 2012,
                 clay-polymer hybrid coatings on PET film to  enhance flame   57: 1061-1105.
                 retardancy and oxygen barrier properties[J]. Progress in Organic   [54]  SALAVAGIONE H J, MARTINEZ G, ELLIS G. Recent advances in
                 Coatings, 2020, 147: 105788.                      the covalent modification of graphene with polymers[J].
            [43]  PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultra strong   Macromolecular Rapid Communications, 2012, 32: 1771-1789.
                 and stiff layered polymer nanocomposites[J]. Science, 2007, 318:   [55]  CHENG H K, SAHOO N G, TAN  Y P,  et al. Poly(vinyl alcohol)
                 80-83.                                            nanocomposites filled with poly(vinyl alcohol)-grafted graphene
            [44]  LUCKHAM P F, ROSSI S. The colloidal and rheological properties   oxide[J]. ACS Appl Mater Interfaces, 2012, 4: 2387-2394.
                 of bentonite suspensions[J]. Advances in Colloid and Interface   [56]  CANO  M, KHAN U, SAIUSBURY T,  et al. Improving the
                 Science, 1999, 82: 43-92.                         mechanical properties of graphene oxide based materials by covalent
            [45]  GREENLAND D J. Adsorption  of polyvinyl alcohols  by   attachment of polymer chains[J]. Carbon, 2013, 52: 363-371.
                 montmorillonite[J]. Journal of Colloid Science, 1963, 18: 647-664.     [57]  HWANG S H, KANG D, RUOFFRS, SHIN H S, et al. Poly(vinyl
            [46]  SUN L, DING F C. Multi-functional high performance nanocoatings   alcohol) reinforced and toughened with poly(dopamine)-treated
                 from a facile co-assembly process: US0315404A1[P]. 2015-11-05.   graphene oxide, and its use for humidity sensing[J]. ACS Nano, 2014,
            [47]  NYFLFLÖTT Å, MOONS E, BONNERUP C, et al. The influence of   8: 6739-6747.
                 clay orientation and crystallinity on oxygen permeation in dispersion   [58]  SHAO L S, LI J  J, GUANG Y,  et al. PVA/polyethyleneimine-
                 barrier coatings[J]. Applied Clay Science, 2016, 126: 7-24.     functionalized graphene composites with optimized properties[J].
            [48]  NYFLFLÖTT Å,  AXRUP L, CARLSSON G,  et al. Influence of   Materials & Design, 2016, 99: 235-242.
   23   24   25   26   27   28   29   30   31   32   33