Page 206 - 《精细化工》2023年第1期
P. 206

·198·                             精细化工   FINE CHEMICALS                                 第 40 卷

            远高于 PMS,且残余阻力系数为 10.409,封堵率达                          (4)物模调驱实验结果表明,核壳聚合物微球
            90.39%。主要原因是 PMS@SiO 2 的 SiO 2 外壳不仅可               PMS@SiO 2 具有良好的调驱性能,封堵率可达
            为微球提供一定的机械强度,增强其在孔喉处的承                             90.39%,采收率增幅为 34.02%。
            压能力,而且 SiO 2 具有疏水性,可改变岩石表面的
                                                               参考文献:
            湿润性和降低油水界面张力,增大波及体积,从而
                                                               [1]   YUAN S Y (袁士义), WANG Q (王强). New progress and prospect
            提高采收率      [19,28] 。                                   of oilfields development technologies in China[J]. Petroleum
                                                                   Exploration  and Development (石油勘探与开发), 2018, 45(4):
                    表 3  PMS@SiO 2 和 PMS 的调驱效果                     657-668.
                                                               [2]   GONG J C (巩锦程), JI Y F (季岩峰), WANG Y L (王彦玲), et al.
            Table 3    Profile control and displacement effect of PMS@SiO 2    Structure-activity relationship and application progress  of  polymer
                    and PMS
                                                                   microspheres for  profile control and flooding in oilfield[J].Fine
                                        一次  微球  二次                 Chemicals (精细化工), 2021, 38(7): 1342-1354.
                        渗透     残余                     采收       [3]   KANG W L (康万利), ZHOU B B (周博博), YANG H B (杨红斌),
               微球                   封堵  水驱  驱采  水驱
                        率/     阻力                     率增           et al. Comprehensive review of polymer  microspheres for oil field
               种类        –3   2    率/%  采收  收率  采收
                      (×10 μm )  系数                   幅/%          conformance control and flooding[J]. Polymer Materials Science and
                                        率/%   /%   率/%
                                                                   Engineering (高分子材料科学与工程), 2020, 36(9): 173-180.
                       1074.6  10.409 90.39 52.98 64.98 87.00 34.02  [4]   CAO D Q, HAN M, WANG J X,  et al. Polymer  microsphere
             PMS@SiO 2
                                                                   injection in large pore-size porous  media[J]. Petroleum, 2020, 6:
             PMS       1124.9  8.337 88.00 56.02 60.21 78.15 22.13  264-270.
              注:一次水驱采收率/%=一次水驱出油体积/饱和油体积×                      [5]   YU H (余昊), MEI X (梅雪), CHEN Y L (陈吟龙). Synthesis of a
                                                                   polymericparticle[J]. Applied Chemical Industry (应用化工), 2015,
            100;微球驱采收率/%=微球驱出油体积/饱和油体积×100;二
                                                                   44(5): 914-917.
            次水驱采收率/%=二次水驱出油体积/饱和油体积×100;采收率                    [6]   LIU X (刘祥),  DU R R (杜荣荣),  DENG K D (邓凯迪),  et al.
            增幅/%=二次水驱采收率-一次水驱采收率。                                  Preparation and performance evaluation of cross-linked polyacry-
                                                                   lamide nanoparticles[J]. Fine Chemicals (精细化工), 2015, 32(11):
                                                                   1301-1306, 1311.
                                                               [7]   WANG H Y, LIN M Q, CHEN D N,  et al. Research on the
                                                                   rheological properties of cross-linked polymer microspheres with
                                                                   different microstructures[J]. Powder Technology, 2018, 331: 310-321.
                                                               [8]   WANG  Z, LIN M, JIN S,  et al.  Combined flooding systems with
                                                                   polymer  microspheres and nonionic surfactant for enhanced water
                                                                   sweep and oil displacement efficiency in heterogeneous reservoirs[J].
                                                                   Journal of Dispersion Science & Technology, 2020, 41(2): 267-276.
                                                               [9]  ZHANG C (张超). Study on the thickening properties and migration
                                                                   law of delayed viscosity increasing polymer[D].  Qingdao: China
                                                                   University of Petroleum (East China) (中国石油大学:  华东), 2016.
                                                               [10]  YU X R (于小荣), PU W F (蒲万芬), CHEN D J (陈大钧), et al.
                                                                   Study on the secondary crosslinking performance of labile polymer
                                                                   microspheres[J]. Fine Chemicals (精细化工), 2015, 32(8): 926-930.

                    图 12  PMS@SiO 2 和 PMS 的调驱性能                [11]  ZHU Q J (朱强娟), ZHAO T H (赵田红), YU X R (于小荣), et al.
            Fig.  12    Profile control and  oil displacement performance   Application of labile crosslinking  agent in  the synthesis  of
                                                                   microspheres and its property impacts[J]. Fine Chemicals (精细化
                    of PMS@SiO 2  and PMS                          工), 2014, 31(9): 1111-1114.
                                                               [12]  ZHU D, BAI B, HOU J. Polymer gel systems for water management
                                                                   in high-temperature petroleum reservoirs: A chemical  review[J].
            3   结论                                                 Energy & Fuels, 2017, 31: 13063-13087.
                                                               [13]  LUO X J (罗新杰), ZHANG X (张熙), FENG Y J (冯玉军). Liquid
                                                                   marbles: Fabrication, physical properties, and applications[J]. Acta
                (1)通过单因素实验,得到干水微反应器的最
                                                                   Physico-Chimica Sinica (物理化学学报), 2020, 36(10): 77-96.
            佳形成条件为:SiO 2 -R812S 与水相质量比 1∶10,                   [14]  ZHANG D J, ZHAO W J, WU Y F, et al. Preparation and properties
                                                                   of multilayer assembled polymer gel microsphere profile control
            搅拌速度 12000 r/min,搅拌时间 120 s。其中内核水
                                                                   agents[J]. Polymer Engineering & Science, 2019, 59(5): 1507-1516.
            相交联剂用量 0.1%,引发剂用量 0.15%,50  ℃下                     [15]  WANG C X (王彩霞). Preparation and properties of liquid marbles
                                                                   and emulsions based on solid particle stabilization[D]. Xi'an: Xi'an
            放置 4 h,即可得到核壳聚合物微球 PMS@SiO 2 。                         University of Science and Technology (西安科技大学), 2020.
                (2)核壳聚合物微球 PMS@SiO 2 为具备良好热                    [16]  ZHAO Z J (赵志建), PU Y (蒲源), WANG D (王丹). Construction
                                                                   and application of  miniature reactors based on liquid  marbles[J].
            稳定性的类球形颗粒,粒径主要分布在 15~35 μm 范                           Chemical Industry and Engineering  Progress (化工进展), 2021,
            围,TEM 证明 PMS@SiO 2 为纳米 SiO 2 颗粒包裹聚                     40(11): 6145-6154.
                                                               [17]  HAN Z Y, GONG L, DU Z M, et al. A novel environmental-friendly
            合物凝胶的核壳形态结构。                                           gel dry-water extinguishant containing additives with efficient combustion
                (3)吸水膨胀实验表明,与常规聚合物微球                               suppression eficiency[J]. Fire Technology, 2020, 56(6): 2365-2385.
                                                               [18]  YANG Y, PU W F, XU X G, et al. Scalable synthesis of core-shell
            PMS 相比,核壳聚合物微球 PMS@SiO 2 具有缓膨性,                        microgel particles using a “dry water”  method.[J]. Chemical
            90  ℃水化 20 d,膨胀倍数约为 5.0,更易进入地层                         Communications, 2019, 55(19): 2849-2852.
                                                               [19]  BAI X F (白小芳). Preparation and application of  deep modifier
            深处,发挥深部调驱作用。                                           polymer microspheres[D]. Xi'an: Northwest University (西北大学), 2019.
   201   202   203   204   205   206   207   208   209   210   211