Page 206 - 《精细化工》2023年第1期
P. 206
·198· 精细化工 FINE CHEMICALS 第 40 卷
远高于 PMS,且残余阻力系数为 10.409,封堵率达 (4)物模调驱实验结果表明,核壳聚合物微球
90.39%。主要原因是 PMS@SiO 2 的 SiO 2 外壳不仅可 PMS@SiO 2 具有良好的调驱性能,封堵率可达
为微球提供一定的机械强度,增强其在孔喉处的承 90.39%,采收率增幅为 34.02%。
压能力,而且 SiO 2 具有疏水性,可改变岩石表面的
参考文献:
湿润性和降低油水界面张力,增大波及体积,从而
[1] YUAN S Y (袁士义), WANG Q (王强). New progress and prospect
提高采收率 [19,28] 。 of oilfields development technologies in China[J]. Petroleum
Exploration and Development (石油勘探与开发), 2018, 45(4):
表 3 PMS@SiO 2 和 PMS 的调驱效果 657-668.
[2] GONG J C (巩锦程), JI Y F (季岩峰), WANG Y L (王彦玲), et al.
Table 3 Profile control and displacement effect of PMS@SiO 2 Structure-activity relationship and application progress of polymer
and PMS
microspheres for profile control and flooding in oilfield[J].Fine
一次 微球 二次 Chemicals (精细化工), 2021, 38(7): 1342-1354.
渗透 残余 采收 [3] KANG W L (康万利), ZHOU B B (周博博), YANG H B (杨红斌),
微球 封堵 水驱 驱采 水驱
率/ 阻力 率增 et al. Comprehensive review of polymer microspheres for oil field
种类 –3 2 率/% 采收 收率 采收
(×10 μm ) 系数 幅/% conformance control and flooding[J]. Polymer Materials Science and
率/% /% 率/%
Engineering (高分子材料科学与工程), 2020, 36(9): 173-180.
1074.6 10.409 90.39 52.98 64.98 87.00 34.02 [4] CAO D Q, HAN M, WANG J X, et al. Polymer microsphere
PMS@SiO 2
injection in large pore-size porous media[J]. Petroleum, 2020, 6:
PMS 1124.9 8.337 88.00 56.02 60.21 78.15 22.13 264-270.
注:一次水驱采收率/%=一次水驱出油体积/饱和油体积× [5] YU H (余昊), MEI X (梅雪), CHEN Y L (陈吟龙). Synthesis of a
polymericparticle[J]. Applied Chemical Industry (应用化工), 2015,
100;微球驱采收率/%=微球驱出油体积/饱和油体积×100;二
44(5): 914-917.
次水驱采收率/%=二次水驱出油体积/饱和油体积×100;采收率 [6] LIU X (刘祥), DU R R (杜荣荣), DENG K D (邓凯迪), et al.
增幅/%=二次水驱采收率-一次水驱采收率。 Preparation and performance evaluation of cross-linked polyacry-
lamide nanoparticles[J]. Fine Chemicals (精细化工), 2015, 32(11):
1301-1306, 1311.
[7] WANG H Y, LIN M Q, CHEN D N, et al. Research on the
rheological properties of cross-linked polymer microspheres with
different microstructures[J]. Powder Technology, 2018, 331: 310-321.
[8] WANG Z, LIN M, JIN S, et al. Combined flooding systems with
polymer microspheres and nonionic surfactant for enhanced water
sweep and oil displacement efficiency in heterogeneous reservoirs[J].
Journal of Dispersion Science & Technology, 2020, 41(2): 267-276.
[9] ZHANG C (张超). Study on the thickening properties and migration
law of delayed viscosity increasing polymer[D]. Qingdao: China
University of Petroleum (East China) (中国石油大学: 华东), 2016.
[10] YU X R (于小荣), PU W F (蒲万芬), CHEN D J (陈大钧), et al.
Study on the secondary crosslinking performance of labile polymer
microspheres[J]. Fine Chemicals (精细化工), 2015, 32(8): 926-930.
图 12 PMS@SiO 2 和 PMS 的调驱性能 [11] ZHU Q J (朱强娟), ZHAO T H (赵田红), YU X R (于小荣), et al.
Fig. 12 Profile control and oil displacement performance Application of labile crosslinking agent in the synthesis of
microspheres and its property impacts[J]. Fine Chemicals (精细化
of PMS@SiO 2 and PMS 工), 2014, 31(9): 1111-1114.
[12] ZHU D, BAI B, HOU J. Polymer gel systems for water management
in high-temperature petroleum reservoirs: A chemical review[J].
3 结论 Energy & Fuels, 2017, 31: 13063-13087.
[13] LUO X J (罗新杰), ZHANG X (张熙), FENG Y J (冯玉军). Liquid
marbles: Fabrication, physical properties, and applications[J]. Acta
(1)通过单因素实验,得到干水微反应器的最
Physico-Chimica Sinica (物理化学学报), 2020, 36(10): 77-96.
佳形成条件为:SiO 2 -R812S 与水相质量比 1∶10, [14] ZHANG D J, ZHAO W J, WU Y F, et al. Preparation and properties
of multilayer assembled polymer gel microsphere profile control
搅拌速度 12000 r/min,搅拌时间 120 s。其中内核水
agents[J]. Polymer Engineering & Science, 2019, 59(5): 1507-1516.
相交联剂用量 0.1%,引发剂用量 0.15%,50 ℃下 [15] WANG C X (王彩霞). Preparation and properties of liquid marbles
and emulsions based on solid particle stabilization[D]. Xi'an: Xi'an
放置 4 h,即可得到核壳聚合物微球 PMS@SiO 2 。 University of Science and Technology (西安科技大学), 2020.
(2)核壳聚合物微球 PMS@SiO 2 为具备良好热 [16] ZHAO Z J (赵志建), PU Y (蒲源), WANG D (王丹). Construction
and application of miniature reactors based on liquid marbles[J].
稳定性的类球形颗粒,粒径主要分布在 15~35 μm 范 Chemical Industry and Engineering Progress (化工进展), 2021,
围,TEM 证明 PMS@SiO 2 为纳米 SiO 2 颗粒包裹聚 40(11): 6145-6154.
[17] HAN Z Y, GONG L, DU Z M, et al. A novel environmental-friendly
合物凝胶的核壳形态结构。 gel dry-water extinguishant containing additives with efficient combustion
(3)吸水膨胀实验表明,与常规聚合物微球 suppression eficiency[J]. Fire Technology, 2020, 56(6): 2365-2385.
[18] YANG Y, PU W F, XU X G, et al. Scalable synthesis of core-shell
PMS 相比,核壳聚合物微球 PMS@SiO 2 具有缓膨性, microgel particles using a “dry water” method.[J]. Chemical
90 ℃水化 20 d,膨胀倍数约为 5.0,更易进入地层 Communications, 2019, 55(19): 2849-2852.
[19] BAI X F (白小芳). Preparation and application of deep modifier
深处,发挥深部调驱作用。 polymer microspheres[D]. Xi'an: Northwest University (西北大学), 2019.