Page 207 - 《精细化工》2023年第1期
P. 207

第 1 期                      严   涵,等:  干水法制备核壳聚合物微球及其性能评价                                  ·199·


            [20]  JIANG Z G (姜志高), ZHENG X Y (郑晓宇), GUO W F (郭文峰),   [24]  BAO W B (鲍文博), LU X G (卢祥国), LIU Y G (刘义刚), et al.
                 et al. Effect of crosslinked polymer microsphere prepared by inverse   Synthesis, optimization and performance evaluation of temperature-
                 suspension  polymerization on improving  polymer flooding[J].   resistant and salt-tolerant microspheres[J]. Fine Chemicals (精细化
                 Oilfield Chemistry (油田化学), 2016, 33(4): 687-691, 704.   工), 2019, 36(5): 984-991.
            [21]  YAO C, LEI G, HOU J, et al. Enhanced oil recovery using micron-   [25]  BAI B, ZHOU J, YIN M. A comprehensive review of polyacrylamide
                 size polyacrylamide elastic  microspheres: Underlying mechanisms   polymer gels for conformance control[J]. Petroleum Exploration and
                 and displacement experiments[J]. Industrial & Engineering Chemistry   Development, 2015, 42(4): 525-532.
                 Research, 2015, 54(43): 10925-10934.          [26]  YUAN C (苑成), GUO R W (郭睿威), CHEN X (陈行), et al. The
            [22]  CHEN Y D, DUAN X G, ZHANG  C F,  et al. Graphitic biochar   delayed-swelling PAM microsphere and its swelling kinetics[J]. Fine
                 catalysts from anaerobic digestion sludge for nonradical degradation   Chemicals (精细化工), 2016, 33(8): 933-938.
                 of micropollutants and disinfection[J]. Chemical Engineering   [27]  LI Q (李强), YU X R (于小荣), XIAO X (肖雪), et al. Preparation
                 Journal, 2020, 195: 1-11.                         and properties of nano-silica reinforced PAM/PEI  gels[J]. Fine
            [23]  LIU J  X (刘进祥),  DAI L Y  (代磊阳), LI X J (李先杰),  et al.   Chemicals (精细化工), 2021, 38(1): 200-205.
                 Microspheres polymer Z1-type of effect flooding control and   [28]  TAO X H (陶晓贺). Preparation of nanofluid contain hydroph-obic
                 adaptability reservoir[J]. Petrochemical Technology (石油化工),   SiO 2 and its impact on enhanced oil recovery[D]. Zhengzhou: Henan
                 2020, 49(12): 1194-1200.                          University (河南大学), 2019.




            (上接第 152 页)                                        [15]  DING H (丁华), WANG J Q (王建清), WANG Y F (王玉峰), et al.
                                                                   Analysis of antibacterial activity of several plant essential oil
            [8]   BURT S A. Essential oils: Their antibacterial properties and potential   combined with nisin[J]. China Condiment (中国调味品), 2016,
                 applications in foods—A review[J]. International Journal of Food   41(6): 73-79.
                 Microbiology, 2004, 94(3): 223-253.           [16]  MB N, SADIKI M, IBNSOUDA S K. Methods for in vitro evaluating
            [9]   MURIEL-GALET  V, CERISUELO J P, LÓPEZ-CARBALLO G,   antimicrobial activity: A review[J]. Journal of Pharmaceutical Analysis,
                 et al. Evaluation of EVOH-coated PP films with oregano essential oil   2016, 6(2): 71-79.
                 and citral to improve the shelf-life of packaged salad[J]. Food   [17]  MUTLU-INGOK  A, DEVECIOGLU D, DIKMETAS  D N,  et al.
                 Control, 2013, 30(1): 137-143.                    Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities
            [10]  SILVEIRA A C,  MOREIRA  G C,  ARTÉS F,  et al. Vanillin  and   of essential oils:  An updated  review[J]. Molecules, 2020, 25(20):
                 cinnamic acid in aqueous solutions or in active modified packaging   4711-4760.
                 preserve the quality of fresh-cut cantaloupe melon[J]. Scientia   [18] SOKOVIĆ M, GLAMOČLIJA J, MARIN P D, et al. Antibacterial
                 Horticulturae, 2015, 192:271-278.                 effects of the essential oils of commonly consumed medicinal herbs
            [11]  FAROOQUI A, KHAN A, BORGHETTO I, et  al. Synergistic   using an in vitro model[J]. Molecules, 2010, 15(11): 7532-7546.
                 antimicrobial activity of Camellia sinensis and Juglans regia against   [19]  CUI H Y, ZHANG C H, LI C Z, et al. Antibacterial mechanism of
                 multidrug-resistant  bacteria[J]. Plos One, 2015, 10(2): e0118431-   oregano essential  oil[J]. Industrial Crops and Products,  2019, 139:
                 e0118445.                                         111498.
            [12] PERUČ D, TIĆAC B,  ABRAM M,  et al. Synergistic potential of   [20]  KAMLE M, MAHATO D K, LEE K E, et al. Ethnopharmacological
                 Juniperus communis and Helichrysum italicum essential oils against   properties and medicinal uses of litsea cubeba[J]. Plants(Basel),
                 nontuberculous mycobacteria[J]. Journal of Medical Microbiology,   2019, 8(6): 1-13.
                 2019, 68(5): 703-710.                         [21]  HU W, LI C Z, DAI J M, et al. Antibacterial activity and mechanism
            [13]  TU X F, HU F,  THAKUR K,  et al. Comparison of antibacterial   of litsea cubeba essential oil  against methicillin-resistant
                 effects and fumigant toxicity of essential oils extracted from different   Staphylococcus aureus (MRSA)[J]. Industrial Crops and Products,
                 plants[J]. Industrial Crops and Products, 2018, 124: 192-200.     2019, 130: 34-41.
            [14]  AYARI S, SHANKAR S, FOLLETT  P,  et al. Potential synergistic   [22]  KANG Y X,  WU  K  W, SUN J,  et al. Preparation of Kushui Rose
                 antimicrobial efficiency of binary combinations  of essential oils   (Rosa setate ×  Rosa rugosa) essential oil fractions by double
                 against  Bacillus cereus and  Paenibacillus amylolyticus—Part A[J].   molecular distillation: Aroma and biological activities[J]. Industrial
                 Microbial Pathogenesis, 2020, 141:104008.         Crops and Products, 2022, 175: 114230.




            (上接第 161 页)                                            processes[D]. Nanchang: Nanchang University (南昌大学), 2018.
            [40]  FAN J, GUO  Y, WANG J,  et al. Rapid decolorization of azo dye   [45]  ZHANG W  X, LI  X M,  YANG Q,  et al. Pretreatment of landfill
                 methyl orange in  aqueous  solution by nanoscale zerovalent iron   leachate in near-neutral pH condition by persulfate activated Fe-C
                 particles[J]. Journal of Hazardous Materials, 2009, 166(2/3): 904-910.   micro-electrolysis system[J]. Chemosphere, 2019, 216(2): 749-756.
            [41]  LAI B (赖波), LIAN  Y (廉雨),  PANG C C  (庞翠翠),  et al.   [46]  PAN L T (潘碌亭), WU J F (吴锦峰), LUO H F (罗华飞).
                 Fluorescence characteristics of typic azo and non-azo dyes[J]. Acta   Microelectrolysis-UASB-contact oxidation process for treatment of
                 Optica Sinica (光学学报), 2011, 31(5): 257-261.       carboxymethyl cellulose production wastewater[J].  CIESC Journal
            [42] SUN  X( 孙雪 ).  Synthesis and photocatalytic performance of   (化工学报), 2010, 61(5): 1275-1281.
                 BiVO 4/RGO composites for degradation of orangeⅡ[D]. Xianyang:   [47]  YANG S (杨硕),  YU W W (余薇薇),  YANG L (杨伦),  et al.
                 Northwest Agriculture and Forestry University (西北农林科技大学),   Degradation mechanism of 17β-estradiol by nano-zero valent iron in
                 2019.                                             aqueous solution[J]. Chemical Industry and Engineering Progress (化
            [43]  JIANG H (蒋浩). Cathode electro-Fenton oxidation of azo dye   工进展), 2020, 39(9): 3826-3834.
                 methyl orange catalyzed by  magnetic Fe 3O 4 nanoparticles[D].   [48]  SHENG C (盛超). The preparation of manganese-carbon micro-
                 Nanjing: Nanjing University (南京大学), 2017.         electrolysis packing and its application in organic industrial
            [44] ZENG  Y  (曾悦).  Study and application of the treatment of dye   wastewater[D]. Wuhan: Wuhan University of Technology (武汉理工
                 wastewater by the physical-chemical and biochemical  combined   大学), 2017.
   202   203   204   205   206   207   208   209   210   211   212