Page 27 - 《精细化工》2023年第1期
P. 27
第 1 期 张如强,等: 高性能聚酰亚胺电磁屏蔽材料的研究进展 ·19·
综上可知,相较于其他 PI 电磁屏蔽材料,PI [3] ORESHINA M N, SAVENKO E Y. Study of the effects of
electromagnetic radiation on the human body[J]. Proceedings of the
纤维纸典型的粗糙而多孔结构赋予了 PI 基体材料较
Tula States University-Sciences of Earth, 2021, 3: 342-347.
大的界面面积和吸附性能,易于电磁损耗功能材料 [4] XIE F (谢璠), GAO K (高坤), ZHUO L H (卓龙海), et al.
的沉积或涂布。此外,借助于 PI 纤维的优异特性, Preparation of RGO/ANFs composite aerogels and their electromagnetic
shielding performance[J]. Fine Chemicals (精细化工), 2022, 39(4):
PI 纸基 EMI 屏蔽材料满足柔性、轻质、耐高温、形 697-705.
状可控的发展要求,能够取代传统的金属板以及树 [5] HENZ D. Shielding chips reduce effects on eeg brain activity
induced by electromagnetic radiation in the 5G range[J].
脂基和陶瓷基等电磁屏蔽材料,是当下很有发展前
Psychophysiology, 2021, 58(1): S58.
景和应用潜力的新型电磁屏蔽材料。 [6] LI D K, CHEN H, FERBER J R, et al. Exposure to magnetic field
non-ionizing radiation and the risk of miscarriage: A prospective
4 结束语与展望 cohort study[J]. Scientific Reports, 2017, 7: 17541.
[7] GAO D G (高党鸽), GUO S H (郭世豪), ZHOU Y Y (周莹莹), et al.
Research progress of flexible base electromagnetic shielding
随着 5G 通信技术的不断发展,未来电磁屏蔽 materials[J]. Fine Chemicals (精细化工), 2021, 38(11): 2161-2170.
市场对高性能电磁屏蔽材料的需求也在不断增加。 [8] PAN T, ZHANG Y, WANG C H, et al. Mulberry-like polyaniline-
based flexible composite fabrics with effective electromagnetic
因此,电磁屏蔽材料行业将迎来巨大的发展机遇。
shielding capability[J]. Composites Science and Technology, 2020,
结合当前国家相关政策以及发展规划,从电磁屏蔽 188: 1079911-1079918.
[9] WEI G H, ZHAO K, REN S Z. Second-order intermodulation low
材料的发展现状和趋势来看,未来 PI EMI 屏蔽材料
frequency blocking effect and mechanism for communication radio
将朝着超薄、轻质化、柔性化、宽频高效吸收、耐 under electromagnetic radiation[J]. Journal of Electronics &
高温、力学性能好等方向发展。 Information Technology, 2020, 42(8): 2059-2064.
[10] ZHANG M K, ZHANG P J, WANG Q, et al. Stretchable liquid metal
PI EMI 屏蔽材料的 SE 主要取决于屏蔽材料的 electromagnetic interference shielding coating materials with
结构、电磁损耗功能材料的选择以及其在 PI 基体材 superior effectiveness[J]. Journal of Materials Chemistry C, 2019,
7(33): 10331-10337.
料内的分散等。多层电磁损耗功能涂层结构材料是 [11] ZHANG M K, ZHANG P J, ZHANG C L, et al. Porous and
增加电磁波反射损耗的有效方式,作用与不同频段 anisotropic liquid metal composites with tunable reflection ratio for
low-temperature electromagnetic interference shielding[J]. Applied
的电磁损耗功能材料的堆叠可实现较宽频率范围内
Materials Today, 2020, 19: 100612.
电磁波的有效屏蔽。因此,后期 PI EMI 屏蔽材料的 [12] DIMUTHU W, FARHAD A. A review on recent advancement of
研究可通过优化复合型多层材料的结构设计,实现 electromagnetic interference shielding novel metallic materials and
processes[J]. Composites: Part B, Engineering, 2019, 176: 107207.
电磁波的梯度反射与吸收,提高电磁波的吸收损耗 [13] MOON J J, PARK O K, LEE J H. Development of hybrid metals
和多次反射损耗。此外,电磁损耗功能材料的分散 coated carbon fibers for high-efficient electromagnetic interference
shielding[J]. Composites Research, 2020, 33(4): 191-197.
对屏蔽材料形成稳定贯通的导电网络至关重要,因 [14] ZHU R Q, LI Z Y, DENG G, et al. Anisotropic magnetic liquid metal
此在后期的研究中,可通过改性电磁损耗功能材料 film for wearable wireless electromagnetic sensing and smart
electromagnetic interference shielding[J]. Nano Energy, 2022, 92:
以优化其在基体中的分散均匀性,提高 PI EMI 屏蔽 106700.
材料的导电性能,进而提高其吸收损耗和反射损耗, [15] CHUNG D D L. Materials for electromagnetic interference
shielding[J]. Materials Chemistry & Physics, 2020, 255: 123587.
最终实现其较高的电磁屏蔽性能。 [16] FUKAI Y, YUDI Z, YUYUAN D, et al. Research progress in
总而言之,随着 PI 材料在电磁屏蔽材料领域的 polyimide foam materials[J]. China Plastics, 2020, 34(11): 94-101.
[17] YU Z, DAI T W, YUAN S W, et al. Electromagnetic interference
深入研究,PI EMI 屏蔽材料的整体性能会不断得到
shielding performance of anisotropic polyimide/graphene composite
提升,以满足当下对高性能电磁屏蔽材料应用的需 aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(27):
求,同时打破现有西方技术对高性能电磁屏蔽材料 30990-31001.
[18] WANG Y Y, ZHOU Z H, ZHOU C G, et al. Lightweight and robust
的垄断,拓宽高性能 PI 材料的应用领域,实现 PI carbon nanotube/polyimide foam for efficient and heat-resistant
材料利用最大化。因此,有必要投入更多的精力来 electromagnetic interference shielding and microwave absorption[J].
ACS Applied Materials & Interfaces, 2020, 12(7): 8704-8712.
克服现有的技术瓶颈,设计和开发性能更优异的高 [19] WANG J H, SUN D P, WU R Z, et al. A good balance between
性能 PI EMI 屏蔽材料。 mechanical properties and electromagnetic shielding effectiveness in
Mg-9Li-3Al-1Zn alloy[J]. Materials Characterization, 2022, 188:
111888.
参考文献:
[20] WANG C (王闯), LI K Z (李克智), LI H J (李贺军), et al. The
[1] Insight and Info. China 5G Industry analysis report 2020-deep electromagnetic interference of carbon fiber reinforced cement-based
market analysis and development prospect research[R]. Beijing: composite[J]. Fine Chemicals (精细化工), 2008, 25(6): 536-540, 544.
Insight and Info Consulting Ltd., 2020. [21] CAO X H (曹雪鸿), CHEN J W (陈继伟). Present status and
[2] MATTHEW U O, KAZAURE J S. Chemical polarization effects of developing trend of paper based electromagnetic shielding
electromagnetic field radiation from the novel 5G network composites[J]. Paper Science & Technology (造纸科学与技术),
deployment at ultra high frequency[J]. Health and Technology, 2021, 2018, 37(5): 6-11.
11(2): 305-317. [22] KUMAR P, MAITI U N, SIKDAR A, et al. Recent advances in