Page 27 - 《精细化工》2023年第1期
P. 27

第 1 期                      张如强,等:  高性能聚酰亚胺电磁屏蔽材料的研究进展                                     ·19·


                 综上可知,相较于其他 PI 电磁屏蔽材料,PI                       [3]   ORESHINA M N, SAVENKO E  Y. Study of the  effects of
                                                                   electromagnetic radiation on the human body[J]. Proceedings of the
            纤维纸典型的粗糙而多孔结构赋予了 PI 基体材料较
                                                                   Tula States University-Sciences of Earth, 2021, 3: 342-347.
            大的界面面积和吸附性能,易于电磁损耗功能材料                             [4]   XIE F (谢璠), GAO K (高坤), ZHUO L H (卓龙海),  et al.
            的沉积或涂布。此外,借助于 PI 纤维的优异特性,                              Preparation of RGO/ANFs composite aerogels and their electromagnetic
                                                                   shielding performance[J]. Fine Chemicals (精细化工), 2022, 39(4):
            PI 纸基 EMI 屏蔽材料满足柔性、轻质、耐高温、形                            697-705.
            状可控的发展要求,能够取代传统的金属板以及树                             [5]   HENZ D. Shielding chips reduce effects on eeg brain activity
                                                                   induced by electromagnetic radiation in the 5G range[J].
            脂基和陶瓷基等电磁屏蔽材料,是当下很有发展前
                                                                   Psychophysiology, 2021, 58(1): S58.
            景和应用潜力的新型电磁屏蔽材料。                                   [6]   LI D K, CHEN H, FERBER J R, et al. Exposure to magnetic field
                                                                   non-ionizing  radiation and the risk  of miscarriage: A prospective
            4   结束语与展望                                             cohort study[J]. Scientific Reports, 2017, 7: 17541.
                                                               [7]   GAO D G (高党鸽), GUO S H (郭世豪), ZHOU Y Y (周莹莹), et al.
                                                                   Research progress of flexible base electromagnetic shielding
                 随着 5G 通信技术的不断发展,未来电磁屏蔽                            materials[J]. Fine Chemicals (精细化工), 2021, 38(11): 2161-2170.
            市场对高性能电磁屏蔽材料的需求也在不断增加。                             [8]   PAN T,  ZHANG  Y, WANG C H,  et al. Mulberry-like polyaniline-
                                                                   based flexible composite fabrics with effective electromagnetic
            因此,电磁屏蔽材料行业将迎来巨大的发展机遇。
                                                                   shielding capability[J]. Composites Science and Technology, 2020,
            结合当前国家相关政策以及发展规划,从电磁屏蔽                                 188: 1079911-1079918.
                                                               [9]   WEI G H, ZHAO K, REN S Z. Second-order intermodulation low
            材料的发展现状和趋势来看,未来 PI EMI 屏蔽材料
                                                                   frequency blocking effect and mechanism for communication radio
            将朝着超薄、轻质化、柔性化、宽频高效吸收、耐                                 under electromagnetic radiation[J]. Journal of Electronics &
            高温、力学性能好等方向发展。                                         Information Technology, 2020, 42(8): 2059-2064.
                                                               [10]  ZHANG M K, ZHANG P J, WANG Q, et al. Stretchable liquid metal
                 PI EMI 屏蔽材料的 SE 主要取决于屏蔽材料的                        electromagnetic interference shielding coating materials with
            结构、电磁损耗功能材料的选择以及其在 PI 基体材                              superior effectiveness[J]. Journal of Materials Chemistry  C, 2019,
                                                                   7(33): 10331-10337.
            料内的分散等。多层电磁损耗功能涂层结构材料是                             [11]  ZHANG M K, ZHANG P J, ZHANG C L,  et al. Porous and
            增加电磁波反射损耗的有效方式,作用与不同频段                                 anisotropic liquid metal composites with tunable reflection ratio for
                                                                   low-temperature electromagnetic interference shielding[J]. Applied
            的电磁损耗功能材料的堆叠可实现较宽频率范围内
                                                                   Materials Today, 2020, 19: 100612.
            电磁波的有效屏蔽。因此,后期 PI EMI 屏蔽材料的                        [12]  DIMUTHU  W, FARHAD A. A review on recent  advancement of
            研究可通过优化复合型多层材料的结构设计,实现                                 electromagnetic interference shielding novel metallic  materials and
                                                                   processes[J]. Composites: Part B, Engineering, 2019, 176: 107207.
            电磁波的梯度反射与吸收,提高电磁波的吸收损耗                             [13]  MOON J J, PARK O K, LEE J H. Development of hybrid metals
            和多次反射损耗。此外,电磁损耗功能材料的分散                                 coated carbon fibers for  high-efficient electromagnetic interference
                                                                   shielding[J]. Composites Research, 2020, 33(4): 191-197.
            对屏蔽材料形成稳定贯通的导电网络至关重要,因                             [14]  ZHU R Q, LI Z Y, DENG G, et al. Anisotropic magnetic liquid metal
            此在后期的研究中,可通过改性电磁损耗功能材料                                 film for wearable wireless electromagnetic sensing  and smart
                                                                   electromagnetic interference shielding[J]. Nano Energy, 2022, 92:
            以优化其在基体中的分散均匀性,提高 PI EMI 屏蔽                            106700.
            材料的导电性能,进而提高其吸收损耗和反射损耗,                            [15]  CHUNG D  D L. Materials for electromagnetic interference
                                                                   shielding[J]. Materials Chemistry & Physics, 2020, 255: 123587.
            最终实现其较高的电磁屏蔽性能。                                    [16]  FUKAI Y,  YUDI  Z, YUYUAN  D,  et al. Research progress in
                 总而言之,随着 PI 材料在电磁屏蔽材料领域的                           polyimide foam materials[J]. China Plastics, 2020, 34(11): 94-101.
                                                               [17]  YU Z, DAI T W,  YUAN S W,  et al. Electromagnetic interference
            深入研究,PI EMI 屏蔽材料的整体性能会不断得到
                                                                   shielding performance of anisotropic polyimide/graphene composite
            提升,以满足当下对高性能电磁屏蔽材料应用的需                                 aerogels[J]. ACS  Applied Materials & Interfaces, 2020, 12(27):
            求,同时打破现有西方技术对高性能电磁屏蔽材料                                 30990-31001.
                                                               [18]  WANG Y Y, ZHOU Z H, ZHOU C G, et al. Lightweight and robust
            的垄断,拓宽高性能 PI 材料的应用领域,实现 PI                             carbon nanotube/polyimide foam for efficient and heat-resistant
            材料利用最大化。因此,有必要投入更多的精力来                                 electromagnetic interference shielding and microwave absorption[J].
                                                                   ACS Applied Materials & Interfaces, 2020, 12(7): 8704-8712.
            克服现有的技术瓶颈,设计和开发性能更优异的高                             [19]  WANG J H, SUN D P, WU R Z,  et al.  A good balance between
            性能 PI EMI 屏蔽材料。                                        mechanical properties and electromagnetic shielding effectiveness in
                                                                   Mg-9Li-3Al-1Zn alloy[J]. Materials  Characterization, 2022, 188:
                                                                   111888.
            参考文献:
                                                               [20] WANG  C  (王闯),  LI K Z (李克智),  LI H J (李贺军),  et al. The
            [1]   Insight and Info. China 5G Industry analysis report  2020-deep   electromagnetic interference of carbon fiber reinforced cement-based
                 market analysis and  development prospect research[R]. Beijing:   composite[J]. Fine Chemicals (精细化工), 2008, 25(6): 536-540, 544.
                 Insight and Info Consulting Ltd., 2020.       [21]  CAO X H (曹雪鸿), CHEN J W  (陈继伟). Present  status and
            [2]   MATTHEW U O, KAZAURE J S. Chemical polarization effects of   developing trend of paper based electromagnetic shielding
                 electromagnetic field radiation from the novel 5G network   composites[J]. Paper Science &  Technology (造纸科学与技术),
                 deployment at ultra high frequency[J]. Health and Technology, 2021,   2018, 37(5): 6-11.
                 11(2): 305-317.                               [22]  KUMAR P, MAITI U N, SIKDAR  A,  et al.  Recent advances in
   22   23   24   25   26   27   28   29   30   31   32