Page 50 - 《精细化工》2023年第1期
P. 50
·42· 精细化工 FINE CHEMICALS 第 40 卷
深入探讨。下一步需要研究的重点:(1)当前人们 absorbent prepared by in-situ synthesis[J]. Journal of Materials Science
& Technology, 2017, 34(6): 999-1007.
对材料的形成机理认知和掌握尚不够深入,精确控 [15] TISSOT I, REYMOND J P, LEFEBVRE F, et al. SiOH-functionalized
制材料的制备难于实现,对纳米核壳材料形成机理 polystyrene latexes. A step toward the synthesis of hollow silica
nanoparticles[J]. Chemistry of Materials, 2002, 14(3): 1325-1331.
进一步深入研究,掌握其本质规律,才能更精准、 [16] CHEN Y C, ZHOU S X, YANG H H, et al. Interaction and
更快速、更高效地对核壳材料的结构进行调节,进 microstructure of polyurethane/silica hybrid films prepared by sol-gel
process[J]. Journal of Sol-Gel Science and Technology, 2006, 37(1):
而获取更优异的功能;(2)核壳型纳米复合催化材 39-47.
料的应用领域依然需要进一步拓宽,在电催化、光 [17] NAYAK S, LEE H, CHMIELEWSKI J, et al. Folate-mediated cell
targeting and cytotoxicity using thermoresponsive microgels[J]. Journal
催化合成等新兴领域中的应用依然较少,在传统热 of the American Chemical Society, 2004, 126(33): 10258-10259.
催化领域,特别是对催化剂的耐高温特性、催化选 [18] BIFFIS A, MINATI L. Efficient aerobic oxidation of alcohols in water
catalysed by microgelstabilised metal nanoclusters[J]. Journal of Catalysis,
择性要求较高的过程中的应用潜力应进一步挖掘。 2005, 236(2): 405-409.
开发高效、便捷的纳米核壳催化材料的制备方 [19] HU Z B, CHEN Y Y, WANG C J, et al. Polymer gels with engineered
environmentally responsive surface patterns[J]. Nature, 1998, 393(6681):
法,丰富其结构类型、精确调控其结构,拓展其催 149-152.
化应用领域,以便使纳米核壳催化材料能够更快、 [20] ADALA I, RAMIS J, MOUSSINGA C N, et al. Mixed polymer and
bioconjugate core/shell electrospun fibres for biphasic protein release[J].
更好地服务生产、生活。 Journal of Materials Chemistry B, 2021, 9: 4120-4133.
[21] LI K X, ZENG Z X, XIONG J J, et al. Fabrication of mesoporous
参考文献: Fe 3O 4@SiO 2@CTAB-SiO 2 magnetic microspheres with a core/shell
structure and their efficient adsorption performance for the removal
18
[1] DECARAJ N K, KELIHER E J, THIRBER G M, et al. F labeled of trace PFOS from water[J]. Colloids and Surfaces A: Physicochemical
nanoparticles for in vivo PET-CT imaging[J]. Bioconjugate Chemistry, and Engineering Aspects, 2015, 465: 113-123.
2009, 20(2): 397-401. [22] LI W, ZHANG B L, LI X J, et al. Preparation and characterization of
[2] JIA H, FRIEBE C, SCHUBERT U S, et al. Core-shell nanop articles novel immobilized Fe 3O 4@SiO 2@mSiO 2-Pd(0) catalyst with large
with a redox polymer core and a silica porous shell as high- pore-size mesoporous for Suzuki coupling reaction[J]. Applied Catalysis
performance cathode material for lithium-ion batteries[J]. Energy A: General, 2013, 459: 65-72.
Technology, 2019, 8: 1901040. [23] FERRER D, TORRES-CASTRO A, GAO X, et al. Three-layer core/
[3] ATANASOV V, SINIGERSKY V, KLAPPER M, et al. Core-shell shell structure in Au-Pd bimetallic nanoparticles[J]. Nano Letters,
macromolecules with rigid dendritic polyphenylene core and polymer 2007, 7(6): 1701-1705.
shells[J]. Macromolecules, 2005, 38: 1672-1683. [24] ZHANG K (张凯), HUANG Y H (黄渝鸿), ZHOU D H (周德惠),
[4] BIAN Z F, KAWI S. Sandwich-like silica@Ni@silica multicore-shell et al. Progress in preparation technology of organic-inorganic composite
catalyst for low temperature dry reforming of methane: Confinement particles [J]. Polymer Bulletin (高分子通报), 2004, (3): 38-42.
effect against carbon formation[J]. ChemCatChem, 2018, 10(1): 320-328. [25] LIZ-MARZAN L M, GIERSIG M, MULVANEY P. Synthesis of
[5] ZHANG N, LIU S Q, FU X Z, et al. Synthesis of M@TiO 2 (M=Au, nanosized gold-silica core-shell particles[J]. Langmuir, 1996, 12(18):
Pd, Pt) core-shell nanocomposites with tunable photoreactivity[J]. 4329-4335.
The Journal of Physical Chemistry C, 2011, 115(18): 9136-9145. [26] VALTCHEV V. Core-shell polystyrene/zeolite A microbeads[J].
[6] LEE J, PARK J C, BANG J U, et al. Precise tuning of porosity and Chemistry of Materials, 2002, 14(3): 956-958.
surface functionality in Au@SiO 2 nanoreactors for high catalytic [27] FISHER M L, COLIC M, RAO M P, et a1. Effect of silica nanoparticle
efficiency[J]. Chemistry of Materials, 2008, 20(18): 5839-5844. size on the stability of alumina/silica suspensions[J]. Journal of the
[7] BAIDA H, BILLAUD P, MARHABA S, et al. Quantitative American Ceramic Society, 2004, 84(4): 713-718.
determination of the size dependence of surface plasmon resonance [28] KIM K D, BAE H J, KIM H T. Synthesis and growth mechanism of
damping in single Ag@SiO 2 nanoparticles[J]. Nano Letters, 2009, TiO 2-coated SiO 2 fine particles[J]. Colloids and Surfaces A:
9(10): 3463-3469. Physicochemical and Engineering Aspects, 2003, 221(1): 163-173.
[8] HE W W, LIU Y, YUAN J S, et al. Au@Pt nanostructures as oxidase [29] KIM K D, BAE H J, KIM H T. Synthesis and characterization of
and peroxidase mimetics for use in immunoassays[J]. Biomaterials, titania-coated silica fine particles by semi-batch process[J]. Colloids
2011, 32(4): 1139-1147. and Surfaces A: Physicochemical and Engineering Aspects, 2003,
[9] ATAEE-ESFAHANIE H, WANG L, NEMOTO Y, et al. Synthesis of 224(1/2/3): 119-126.
bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt [30] YANG R X, XU L R, WU S L, et al. Ni/SiO 2 core-shell catalysts for
shell toward highly active electrocatalysts[J]. Chemistry of Materials, catalytic hydrogen production from waste plastics-derived syngas[J].
2010, 22(23): 6310-6318. International Journal of Hydrogen Energy, 2017, 42(16): 11239-11251.
[10] ZHANG P P, HU Y B, LI B H, et al. Kinetically stabilized Pd@Pt [31] ZANATA D, FELISBERTI M I. Self-assembly of dual-responsive
core-shell octahedral nanoparticles with thin Pt layers for enhanced Amphiphilic POEGMA-b-P4VP-b-POEGMA triblock copolymers:
2+
catalytic hydrogenation performance[J]. ACS Catalysis, 2015, 5(2): Effect of temperature, pH, and complexation with Cu [J]. Polymer
1335-1343. Chemistry, 2021,12(32): 4668-4679.
[11] HUI C, SHEN C M, TIAN J F, et al. Core-shell Fe 3O 4@SiO 2 nanoparticles [32] SHAO M F, NING F Y, ZHAO J W, et al. Preparation of
synthesized with well-dispersed hydrophilic Fe 3O 4 seeds[J]. Nanoscale, Fe 3O 4@SiO 2@layered double hydroxide core-shell microspheres for
2011, 3(2): 701-705. magnetic separation of proteins[J]. Journal of the American Chemical
[12] DENG Y H, QI D W, DENG C H, et al. Superparamagnetic high- Society, 2011, 134(2): 1071-1077.
magnetization microspheres with an Fe 3O 4@SiO 2 core and perpendicularly [33] WU L K, WU W Y, XIA J, et al. Nanostructured NiCo@NiCoO x
aligned mesoporous SiO 2 shell for removal of microcystins[J]. Journal core-shell layer as efficient and robust electrocatalyst for oxygen
of the American Chemical Society, 2008, 130(1): 28-29. evolution reaction[J]. Electrochimica Acta, 2017, 254: 337-347.
[13] SALAVATI-NIASARI M, DAVAR F, MAZAHERI M. Preparation of [34] HOU Y H, YUAN H L, CHEN H, et al. The preparation and lithium
ZnO nanoparticles from [bis(acetylacetonato) zinc (Ⅱ)]-oleylamine battery performance of core-shell SiO 2@Fe 3O 4@C composite[J].
complex by thermal decomposition[J]. Materials Letters, 2008, 62(12): Ceramics International, 2017, 43 (14): 11505-11510.
1890-1892. [35] SUTTWONG T, SAI H, LEE J, et al. Ordered mesoporous silica
[14] ZENG B R, YANG L, ZHENG W, et al. Analysis of the formation nanoparticles with and without embedded iron oxide nanoparticles:
process and performance of magnetic Fe 3O 4@Poly(4-vinylpyridine) Structure evolution during synthesis[J]. Journal of Materials Chemistry,