Page 50 - 《精细化工》2023年第1期
P. 50

·42·                              精细化工   FINE CHEMICALS                                 第 40 卷

            深入探讨。下一步需要研究的重点:(1)当前人们                                absorbent prepared by in-situ synthesis[J]. Journal of Materials Science
                                                                   & Technology, 2017, 34(6): 999-1007.
            对材料的形成机理认知和掌握尚不够深入,精确控                             [15]  TISSOT I, REYMOND J P, LEFEBVRE F, et al. SiOH-functionalized
            制材料的制备难于实现,对纳米核壳材料形成机理                                 polystyrene latexes. A step toward the synthesis of  hollow silica
                                                                   nanoparticles[J]. Chemistry of Materials, 2002, 14(3): 1325-1331.
            进一步深入研究,掌握其本质规律,才能更精准、                             [16]  CHEN Y C,  ZHOU S X, YANG  H H,  et al. Interaction and
            更快速、更高效地对核壳材料的结构进行调节,进                                 microstructure of polyurethane/silica hybrid films prepared by sol-gel
                                                                   process[J]. Journal of Sol-Gel Science and Technology, 2006, 37(1):
            而获取更优异的功能;(2)核壳型纳米复合催化材                                39-47.
            料的应用领域依然需要进一步拓宽,在电催化、光                             [17]  NAYAK S, LEE  H, CHMIELEWSKI  J, et al. Folate-mediated cell
                                                                   targeting and cytotoxicity using thermoresponsive microgels[J]. Journal
            催化合成等新兴领域中的应用依然较少,在传统热                                 of the American Chemical Society, 2004, 126(33): 10258-10259.
            催化领域,特别是对催化剂的耐高温特性、催化选                             [18]  BIFFIS A, MINATI L. Efficient aerobic oxidation of alcohols in water
                                                                   catalysed by microgelstabilised metal nanoclusters[J]. Journal of Catalysis,
            择性要求较高的过程中的应用潜力应进一步挖掘。                                 2005, 236(2): 405-409.
                 开发高效、便捷的纳米核壳催化材料的制备方                          [19]  HU Z B, CHEN Y Y, WANG C J, et al. Polymer gels with engineered
                                                                   environmentally responsive surface patterns[J]. Nature, 1998, 393(6681):
            法,丰富其结构类型、精确调控其结构,拓展其催                                 149-152.
            化应用领域,以便使纳米核壳催化材料能够更快、                             [20]  ADALA I, RAMIS J, MOUSSINGA C N, et al. Mixed polymer and
                                                                   bioconjugate core/shell electrospun fibres for biphasic protein release[J].
            更好地服务生产、生活。                                            Journal of Materials Chemistry B, 2021, 9: 4120-4133.
                                                               [21]  LI K X, ZENG Z X, XIONG J J, et al. Fabrication of mesoporous
            参考文献:                                                  Fe 3O 4@SiO 2@CTAB-SiO 2 magnetic microspheres with a core/shell
                                                                   structure and their efficient adsorption performance for the removal
                                                    18
            [1]   DECARAJ N K, KELIHER E J, THIRBER G M, et al.  F labeled   of trace PFOS from water[J]. Colloids and Surfaces A: Physicochemical
                 nanoparticles for in vivo PET-CT imaging[J]. Bioconjugate Chemistry,   and Engineering Aspects, 2015, 465: 113-123.
                 2009, 20(2): 397-401.                         [22]  LI W, ZHANG B L, LI X J, et al. Preparation and characterization of
            [2]   JIA H, FRIEBE C, SCHUBERT U S, et al. Core-shell nanop articles   novel immobilized Fe 3O 4@SiO 2@mSiO 2-Pd(0) catalyst with large
                 with a redox polymer core  and a silica porous shell as high-   pore-size mesoporous for Suzuki coupling reaction[J]. Applied Catalysis
                 performance  cathode  material for lithium-ion batteries[J].  Energy   A: General, 2013, 459: 65-72.
                 Technology, 2019, 8: 1901040.                 [23]  FERRER D, TORRES-CASTRO A, GAO X, et al. Three-layer core/
            [3]   ATANASOV V, SINIGERSKY  V, KLAPPER M,  et al. Core-shell   shell structure in  Au-Pd bimetallic nanoparticles[J]. Nano Letters,
                 macromolecules with rigid dendritic polyphenylene core and polymer   2007, 7(6): 1701-1705.
                 shells[J]. Macromolecules, 2005, 38: 1672-1683.   [24]  ZHANG K (张凯), HUANG Y H (黄渝鸿), ZHOU D H (周德惠),
            [4]   BIAN Z F, KAWI S. Sandwich-like silica@Ni@silica multicore-shell   et al. Progress in preparation technology of organic-inorganic composite
                 catalyst for low temperature dry reforming of methane: Confinement   particles [J]. Polymer Bulletin (高分子通报), 2004, (3): 38-42.
                 effect against carbon formation[J]. ChemCatChem, 2018, 10(1): 320-328.   [25]  LIZ-MARZAN L  M, GIERSIG M,  MULVANEY P. Synthesis  of
            [5]   ZHANG N, LIU S Q, FU X Z, et al. Synthesis of M@TiO 2 (M=Au,   nanosized  gold-silica  core-shell particles[J].  Langmuir, 1996, 12(18):
                 Pd, Pt) core-shell  nanocomposites with tunable photoreactivity[J].   4329-4335.
                 The Journal of Physical Chemistry C, 2011, 115(18): 9136-9145.   [26]  VALTCHEV V.  Core-shell polystyrene/zeolite A  microbeads[J].
            [6]   LEE J, PARK J C, BANG J U, et al. Precise tuning of porosity and   Chemistry of Materials, 2002, 14(3): 956-958.
                 surface functionality in Au@SiO 2 nanoreactors for high catalytic   [27]  FISHER M L, COLIC M, RAO M P, et a1. Effect of silica nanoparticle
                 efficiency[J]. Chemistry of Materials, 2008, 20(18): 5839-5844.   size on the stability of alumina/silica suspensions[J]. Journal of the
            [7]   BAIDA H, BILLAUD P, MARHABA S,  et al. Quantitative   American Ceramic Society, 2004, 84(4): 713-718.
                 determination of the size dependence of surface plasmon resonance   [28]  KIM K D, BAE H J, KIM H T. Synthesis and growth mechanism of
                 damping  in single Ag@SiO 2 nanoparticles[J]. Nano Letters, 2009,   TiO 2-coated SiO 2 fine particles[J]. Colloids and  Surfaces A:
                 9(10): 3463-3469.                                 Physicochemical and Engineering Aspects, 2003, 221(1): 163-173.
            [8]   HE W W, LIU Y, YUAN J S, et al. Au@Pt nanostructures as oxidase   [29]  KIM K D, BAE H J,  KIM H  T. Synthesis and characterization of
                 and peroxidase mimetics for use in immunoassays[J]. Biomaterials,   titania-coated silica fine particles by semi-batch process[J]. Colloids
                 2011, 32(4): 1139-1147.                           and Surfaces A: Physicochemical and Engineering Aspects, 2003,
            [9]   ATAEE-ESFAHANIE H, WANG L, NEMOTO Y, et al. Synthesis of   224(1/2/3): 119-126.
                 bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt   [30]  YANG R X, XU L R, WU S L, et al. Ni/SiO 2 core-shell catalysts for
                 shell toward highly active electrocatalysts[J]. Chemistry of Materials,   catalytic hydrogen production from waste plastics-derived syngas[J].
                 2010, 22(23): 6310-6318.                          International Journal of Hydrogen Energy, 2017, 42(16): 11239-11251.
            [10]  ZHANG P P, HU Y B, LI B H, et al. Kinetically stabilized Pd@Pt   [31]  ZANATA D, FELISBERTI M I. Self-assembly of dual-responsive
                 core-shell octahedral nanoparticles with thin Pt layers for enhanced   Amphiphilic POEGMA-b-P4VP-b-POEGMA triblock  copolymers:
                                                                                                    2+
                 catalytic hydrogenation performance[J]. ACS Catalysis, 2015, 5(2):   Effect of temperature, pH, and complexation with Cu [J]. Polymer
                 1335-1343.                                        Chemistry, 2021,12(32): 4668-4679.
            [11]  HUI C, SHEN C M, TIAN J F, et al. Core-shell Fe 3O 4@SiO 2 nanoparticles   [32]  SHAO M F, NING F Y, ZHAO J  W,  et al. Preparation of
                 synthesized with well-dispersed hydrophilic Fe 3O 4 seeds[J].  Nanoscale,   Fe 3O 4@SiO 2@layered double hydroxide core-shell microspheres for
                 2011, 3(2): 701-705.                              magnetic separation of proteins[J]. Journal of the American Chemical
            [12]  DENG Y H, QI D W, DENG C H, et al. Superparamagnetic high-   Society, 2011, 134(2): 1071-1077.
                 magnetization microspheres with an Fe 3O 4@SiO 2 core and perpendicularly   [33]  WU  L K,  WU  W Y, XIA J,  et al. Nanostructured  NiCo@NiCoO x
                 aligned mesoporous SiO 2 shell for removal of microcystins[J]. Journal   core-shell layer as efficient and robust electrocatalyst for oxygen
                 of the American Chemical Society, 2008, 130(1): 28-29.     evolution reaction[J]. Electrochimica Acta, 2017, 254: 337-347.
            [13]  SALAVATI-NIASARI M, DAVAR F, MAZAHERI M. Preparation of   [34]  HOU Y H, YUAN H L, CHEN H, et al. The preparation and lithium
                 ZnO nanoparticles from [bis(acetylacetonato) zinc (Ⅱ)]-oleylamine   battery performance of core-shell SiO 2@Fe 3O 4@C composite[J].
                 complex by thermal decomposition[J]. Materials Letters, 2008, 62(12):   Ceramics International, 2017, 43 (14): 11505-11510.
                 1890-1892.                                    [35]  SUTTWONG T, SAI H, LEE J,  et al.  Ordered mesoporous  silica
            [14]  ZENG B R, YANG L, ZHENG W, et al. Analysis of the formation   nanoparticles with and without embedded iron oxide nanoparticles:
                 process and performance of magnetic Fe 3O 4@Poly(4-vinylpyridine)   Structure evolution during synthesis[J]. Journal of Materials Chemistry,
   45   46   47   48   49   50   51   52   53   54   55