Page 51 - 《精细化工》2023年第1期
P. 51

第 1 期                  史大昕,等:  核壳结构纳米复合材料的制备及催化应用研究进展                                     ·43·


                 2010, 20(36): 7807-7814.                      [47]  WANG C Z, JIE X Y, QIU Y, et al. The importance of inner cavity
            [36]  YE F, LAURENT S, FORNARA A, et al. Uniform mesoporous silica   space within Ni@SiO 2 nanocapsule catalysts for excellent coking
                 coated iron oxide nanoparticles as a highly efficient, nontoxic MRI   resistance in the high-space-velocity dry reforming of methane[J].
                 T2 contrast agent with tunable proton relaxivities[J]. Contrast Media   Applied Catalysis B: Environmental, 2019, 259: 118019.
                 and Molecular Imaging, 2012, 7(5): 460-468.   [48]  YUE Q, ZHANG Y, WANG C, et al. Magnetic yolk-shell mesoporous
            [37]  WU Z Z, LIANG J L, JI X H, et al. Preparation of uniform Au@SiO 2   silica microspheres with supported Au nanoparticles as  recyclable
                 particles by direct silica coating on citrate-capped Au nanoparticles[J].   high-performance nanocatalysts[J]. Journal of Materials Chemistry
                 Colloids and Surfaces A: Physicochemical and Engineering Aspects,   A, 2015, 3(8): 4586-4594.
                 2011, 392(1): 220-224.                        [49]  YU K, WU Z C, ZHAO Q R, et al. High-temperature-stable Au@SnO 2
            [38]  IM S H, HERRICKS T, LEE Y T, et al. Synthesis and characterization   core/shell supported catalyst for CO oxidation[J]. Journal of Physical
                 of monodisperse silica colloids loaded with superparamagnetic iron   Chemistry C, 2008, 112(7): 2244-2247.
                 oxide nanoparticles[J]. Chemical Physics Letters, 2005, 401(1/2/3):   [50]  LI L, HE S C, SONG Y Y, et al. Fine-tunable Ni@porous silica core-
                 19-23.                                            shell nanocatalysts: Synthesis, characterization, and catalytic properties
            [39]  JIANG Z F, XIE J M, JIANG D L, et al. Facile route fabrication of   in partial oxidation of  methane to syngas[J]. Journal of Catalysis,
                 nano-Ni core mesoporous-silica shell  particles with  high catalytic   2012, 288(2): 54-64.
                 activity towards 4-nitrophenol reduction[J].  CrystEngComm, 2012,   [51]  TAKENAKA  S, UMEBAYASHI H, TANABE E,  et al. Specific
                 14(14): 4601-4611.                                performance of silica-coated Ni catalysts for the partial oxidation of
            [40]  DARBANDI M, LU W G, FANG Y J, et al. Silica encapsulation of   methane to synthesis gas[J]. Journal of Catalysis, 2007, 245(2): 392-400.
                 hydrophobically ligated PbSe nanocrystals[J]. Langmuir, 2006, 22(9):   [52]  CHANG W K, RAO K K, KUO H C, et al. A novel core-shell like
                 4371-4375.                                        composite In 2O 3@CaIn 2O 4 for efficient degradation of  Methylene
            [41]  DING H L, ZHANG Y X, WANG S, et al. Fe 3O 4@SiO 2 core/shell   Blue by visible light[J]. Applied Catalysis A: General, 2007, 321(1):
                 nanoparticles: The silica coating regulations with a single core for   1-6.
                 different core sizes and shell thicknesses[J]. Chemistry of Materials,   [53]  WANG D, HISATOMI T, TAKATA T, et al. Core/shell photocatalyst
                 2012, 24(23): 4572-4580.                          with spatially separated Co-catalysts for efficient reduction and oxidation
            [42]  ZHANG M,  CUSHING B L, CHARLES J. Synthesis and   of aater[J]. Angewandte Chemie International Edition, 2013, 52: 1-5.
                 characterization of  monodisperse  ultra-thin silicacoated magnetic   [54]  SHEN Y, ZHOU Y, WANG D, et al. Nickel-copper alloy encapsulated
                 nanoparticles[J]. Nanotechnology, 2008, 19(8): 085601.   in graphitic carbon shells as electrocatalysts for hydrogen evolution
            [43]  SHI Z S,  TAN  Q Q,  WU D F. A novel core-shell structured   reaction[J]. Advanced Energy Materials, 2017, 8: 1701759.
                 CuIn@SiO 2 catalyst for CO 2 hydrogenation to methanol[J]. AIChE   [55]  TU Y C, REN  P J,  DENG  D  H,  et al.  Structural and electronic
                 Journal, 2019, 65(3): 1047-1058.                  optimization of graphene encapsulating binary metal for highly efficient
            [44]  LI K T, HSU M  H, WANG I. Palladium core-porous silica shell-   water oxidation[J]. Nano Energy, 2018, 52: 494-500.
                 nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde[J].   [56]  HAO R, REN J T, LYU X W, et al. N-doped porous carbon hollow
                 Catalysis Communications, 2008, 9(13): 2257-2260.   microspheres encapsulated with iron-based nanocomposites as advanced
            [45]  YU J Y, YAN L, TU G M, et al. Magnetically responsive core-shell   bifunctional catalysts for rechargeable Zn-air battery[J].  Journal of
                 Pd/Fe 3O 4@C composite catalysts for the hydrogenation of cinnamaldehyde[J].   Energy Chemistry, 2020, 49: 14-21.
                 Catalysis Letters, 2014, 144(12): 2065-2070.     [57]  CHENG Q Q, HAN S B, MAO K, et al. Co nanoparticle embedded
            [46]  TANG C L (唐成黎). Ni-based core-shell catalysts for dry reforming   in atomically-dispersed Co-N-C nanofibers for oxygen reduction
                 of methane: Preparation and catalytic evaluation[D]. Chongqing:   with high activity and remarkable durability[J]. Nano Energy, 2018,
                 Chongqing University (重庆大学), 2017.                52: 485-493.




            (上接第 20 页)                                         [65]  WANG Z W, LI S Z, WANG J H, et al. Dielectric and mechanical
            [58]  ZENG Z H, WU N, WEI J J, et al. Porous and ultra-flexible crosslinked   properties of polyimide fiber reinforced cyanate  ester resin
                 MXene/polyimide composites for multifunctional electromagnetic   composites with varying resin contents[J]. Journal of Polymer
                 interference shielding[J]. Nano-Micro Letters, 2022, 14(1): 59.     Research, 2020, 27(6): 1-5.
            [59]  WANG J Z (王建中), XI H P (奚慧萍), TANG H P (汤慧萍), et al.   [66]  GUO H T, CHEN Y M, LI Y, et al. Electrospun fibrous materials and
                 Research progress  of electromagnetic shielding material of metal   their applications  for electromagnetic interference shielding:  A
                 fiber[J]. Rare Metal Materials and Engineering (稀有金属材料与工  review[J]. Composites Part A: Applied Science and Manufacturing,
                 程), 2011, 40(9): 1688-1692.                       2021, 143: 106309.
            [60]  MA J J, WANG K, ZHAN M S. A comparative study of structure and   [67]  CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun
                 electromagnetic interference shielding performance for silver   nanofibrous materials for electromagnetic interference shielding[J].
                 nanostructure hybrid polyimide foams[J]. RSC Advances, 2015,   Composites Communications, 2021, 27: 100823
                 5(80): 65283-65296.                           [68]  ZHANG S,  WU J  T, LIU J G,  et al. Ti 3C 2T x MXene  nanosheets
            [61] ZHAN  L  (张林),  WANG J C (王劲草). Electroconductibility and   sandwiched between Ag nanowire-polyimide fiber mats for
                 electromagnetic shielding effectiveness of electroless copper plating   electromagnetic Interference Shielding[J]. ACS Applied Nano
                 on PI base plate[J]. Surface Technology (表面技术), 2017, 46(12):   Materials, 2021, 4(12): 13976-13985.
                 186-191.                                      [69]  DONG X Q (董馨茜). Fabrication and properties  of electrospun
            [62] ZHANG L (张雷), MA J Z (马建中), ZHANG Y H (张跃宏), et al.   PI/Fe 3O 4 composite fibrous membrane[D]. Harbin: Harbin University
                 Research progress of polymer-based graphene oxide nanocomposites[J].   of Science and Technology (哈尔滨理工大学), 2018.
                 Fine Chemicals (精细化工), 2020, 37(11): 2161-2171.   [70]  WANG Y, WANG W, DING X D, et al. Multilayer-structured Ni-Co-
            [63]  WANG Y Y, SUN W J, YAN D X, et al. Ultralight carbon nanotube/   Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic
                 graphene/polyimide foam with heterogeneous interfaces for efficient   shielding with low reflection characteristic[J]. Chemical Engineering
                 electromagnetic interference shielding and electromagnetic wave   Journal, 2020, 380: 1385-8947.
                 absorption[J]. Carbon, 2021, 176: 118-125.    [71]  ZHANG R Q (张如强), ZHANG G  L (张国亮), LONG Z (龙柱),
            [64]  YANG H L, YU  Z,  WU P,  et al. Electromagnetic  interference   et al. Preparation and properties of light-weight flexible polyimide
                 shielding effectiveness of microcellular polyimide/in situ thermally   paper-based electromagnetic shielding composites[J]. Chemical
                 reduced graphene oxide/carbon nanotubes nanocomposites[J]. Applied   Journal of Chinese Universities (高等学校化学学报), 2021, 42(10):
                 Surface Science, 2018, 434: 318-325.              3211-3217.
   46   47   48   49   50   51   52   53   54   55   56