Page 51 - 《精细化工》2023年第1期
P. 51
第 1 期 史大昕,等: 核壳结构纳米复合材料的制备及催化应用研究进展 ·43·
2010, 20(36): 7807-7814. [47] WANG C Z, JIE X Y, QIU Y, et al. The importance of inner cavity
[36] YE F, LAURENT S, FORNARA A, et al. Uniform mesoporous silica space within Ni@SiO 2 nanocapsule catalysts for excellent coking
coated iron oxide nanoparticles as a highly efficient, nontoxic MRI resistance in the high-space-velocity dry reforming of methane[J].
T2 contrast agent with tunable proton relaxivities[J]. Contrast Media Applied Catalysis B: Environmental, 2019, 259: 118019.
and Molecular Imaging, 2012, 7(5): 460-468. [48] YUE Q, ZHANG Y, WANG C, et al. Magnetic yolk-shell mesoporous
[37] WU Z Z, LIANG J L, JI X H, et al. Preparation of uniform Au@SiO 2 silica microspheres with supported Au nanoparticles as recyclable
particles by direct silica coating on citrate-capped Au nanoparticles[J]. high-performance nanocatalysts[J]. Journal of Materials Chemistry
Colloids and Surfaces A: Physicochemical and Engineering Aspects, A, 2015, 3(8): 4586-4594.
2011, 392(1): 220-224. [49] YU K, WU Z C, ZHAO Q R, et al. High-temperature-stable Au@SnO 2
[38] IM S H, HERRICKS T, LEE Y T, et al. Synthesis and characterization core/shell supported catalyst for CO oxidation[J]. Journal of Physical
of monodisperse silica colloids loaded with superparamagnetic iron Chemistry C, 2008, 112(7): 2244-2247.
oxide nanoparticles[J]. Chemical Physics Letters, 2005, 401(1/2/3): [50] LI L, HE S C, SONG Y Y, et al. Fine-tunable Ni@porous silica core-
19-23. shell nanocatalysts: Synthesis, characterization, and catalytic properties
[39] JIANG Z F, XIE J M, JIANG D L, et al. Facile route fabrication of in partial oxidation of methane to syngas[J]. Journal of Catalysis,
nano-Ni core mesoporous-silica shell particles with high catalytic 2012, 288(2): 54-64.
activity towards 4-nitrophenol reduction[J]. CrystEngComm, 2012, [51] TAKENAKA S, UMEBAYASHI H, TANABE E, et al. Specific
14(14): 4601-4611. performance of silica-coated Ni catalysts for the partial oxidation of
[40] DARBANDI M, LU W G, FANG Y J, et al. Silica encapsulation of methane to synthesis gas[J]. Journal of Catalysis, 2007, 245(2): 392-400.
hydrophobically ligated PbSe nanocrystals[J]. Langmuir, 2006, 22(9): [52] CHANG W K, RAO K K, KUO H C, et al. A novel core-shell like
4371-4375. composite In 2O 3@CaIn 2O 4 for efficient degradation of Methylene
[41] DING H L, ZHANG Y X, WANG S, et al. Fe 3O 4@SiO 2 core/shell Blue by visible light[J]. Applied Catalysis A: General, 2007, 321(1):
nanoparticles: The silica coating regulations with a single core for 1-6.
different core sizes and shell thicknesses[J]. Chemistry of Materials, [53] WANG D, HISATOMI T, TAKATA T, et al. Core/shell photocatalyst
2012, 24(23): 4572-4580. with spatially separated Co-catalysts for efficient reduction and oxidation
[42] ZHANG M, CUSHING B L, CHARLES J. Synthesis and of aater[J]. Angewandte Chemie International Edition, 2013, 52: 1-5.
characterization of monodisperse ultra-thin silicacoated magnetic [54] SHEN Y, ZHOU Y, WANG D, et al. Nickel-copper alloy encapsulated
nanoparticles[J]. Nanotechnology, 2008, 19(8): 085601. in graphitic carbon shells as electrocatalysts for hydrogen evolution
[43] SHI Z S, TAN Q Q, WU D F. A novel core-shell structured reaction[J]. Advanced Energy Materials, 2017, 8: 1701759.
CuIn@SiO 2 catalyst for CO 2 hydrogenation to methanol[J]. AIChE [55] TU Y C, REN P J, DENG D H, et al. Structural and electronic
Journal, 2019, 65(3): 1047-1058. optimization of graphene encapsulating binary metal for highly efficient
[44] LI K T, HSU M H, WANG I. Palladium core-porous silica shell- water oxidation[J]. Nano Energy, 2018, 52: 494-500.
nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde[J]. [56] HAO R, REN J T, LYU X W, et al. N-doped porous carbon hollow
Catalysis Communications, 2008, 9(13): 2257-2260. microspheres encapsulated with iron-based nanocomposites as advanced
[45] YU J Y, YAN L, TU G M, et al. Magnetically responsive core-shell bifunctional catalysts for rechargeable Zn-air battery[J]. Journal of
Pd/Fe 3O 4@C composite catalysts for the hydrogenation of cinnamaldehyde[J]. Energy Chemistry, 2020, 49: 14-21.
Catalysis Letters, 2014, 144(12): 2065-2070. [57] CHENG Q Q, HAN S B, MAO K, et al. Co nanoparticle embedded
[46] TANG C L (唐成黎). Ni-based core-shell catalysts for dry reforming in atomically-dispersed Co-N-C nanofibers for oxygen reduction
of methane: Preparation and catalytic evaluation[D]. Chongqing: with high activity and remarkable durability[J]. Nano Energy, 2018,
Chongqing University (重庆大学), 2017. 52: 485-493.
(上接第 20 页) [65] WANG Z W, LI S Z, WANG J H, et al. Dielectric and mechanical
[58] ZENG Z H, WU N, WEI J J, et al. Porous and ultra-flexible crosslinked properties of polyimide fiber reinforced cyanate ester resin
MXene/polyimide composites for multifunctional electromagnetic composites with varying resin contents[J]. Journal of Polymer
interference shielding[J]. Nano-Micro Letters, 2022, 14(1): 59. Research, 2020, 27(6): 1-5.
[59] WANG J Z (王建中), XI H P (奚慧萍), TANG H P (汤慧萍), et al. [66] GUO H T, CHEN Y M, LI Y, et al. Electrospun fibrous materials and
Research progress of electromagnetic shielding material of metal their applications for electromagnetic interference shielding: A
fiber[J]. Rare Metal Materials and Engineering (稀有金属材料与工 review[J]. Composites Part A: Applied Science and Manufacturing,
程), 2011, 40(9): 1688-1692. 2021, 143: 106309.
[60] MA J J, WANG K, ZHAN M S. A comparative study of structure and [67] CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun
electromagnetic interference shielding performance for silver nanofibrous materials for electromagnetic interference shielding[J].
nanostructure hybrid polyimide foams[J]. RSC Advances, 2015, Composites Communications, 2021, 27: 100823
5(80): 65283-65296. [68] ZHANG S, WU J T, LIU J G, et al. Ti 3C 2T x MXene nanosheets
[61] ZHAN L (张林), WANG J C (王劲草). Electroconductibility and sandwiched between Ag nanowire-polyimide fiber mats for
electromagnetic shielding effectiveness of electroless copper plating electromagnetic Interference Shielding[J]. ACS Applied Nano
on PI base plate[J]. Surface Technology (表面技术), 2017, 46(12): Materials, 2021, 4(12): 13976-13985.
186-191. [69] DONG X Q (董馨茜). Fabrication and properties of electrospun
[62] ZHANG L (张雷), MA J Z (马建中), ZHANG Y H (张跃宏), et al. PI/Fe 3O 4 composite fibrous membrane[D]. Harbin: Harbin University
Research progress of polymer-based graphene oxide nanocomposites[J]. of Science and Technology (哈尔滨理工大学), 2018.
Fine Chemicals (精细化工), 2020, 37(11): 2161-2171. [70] WANG Y, WANG W, DING X D, et al. Multilayer-structured Ni-Co-
[63] WANG Y Y, SUN W J, YAN D X, et al. Ultralight carbon nanotube/ Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic
graphene/polyimide foam with heterogeneous interfaces for efficient shielding with low reflection characteristic[J]. Chemical Engineering
electromagnetic interference shielding and electromagnetic wave Journal, 2020, 380: 1385-8947.
absorption[J]. Carbon, 2021, 176: 118-125. [71] ZHANG R Q (张如强), ZHANG G L (张国亮), LONG Z (龙柱),
[64] YANG H L, YU Z, WU P, et al. Electromagnetic interference et al. Preparation and properties of light-weight flexible polyimide
shielding effectiveness of microcellular polyimide/in situ thermally paper-based electromagnetic shielding composites[J]. Chemical
reduced graphene oxide/carbon nanotubes nanocomposites[J]. Applied Journal of Chinese Universities (高等学校化学学报), 2021, 42(10):
Surface Science, 2018, 434: 318-325. 3211-3217.