Page 207 - 《精细化工)》2023年第10期
P. 207
第 10 期 杜永梅,等: 氧化玉米淀粉-聚己内酯基抗菌膜的制备及性能 ·2285·
[12] KAUR B, ARIFFIN F, BHAT R, et al. Progress in starch compounds: Ⅰ. The out-of-plane CH bending vibrations in the region
−1
modification in the last decade[J]. Food Hydrocolloids, 2012, 26(2): 625~900 cm [J]. Spectrochimica Acta, 1955, 7: 14-24.
398-404. [22] VITAKU E, SMITH D T, NJARDARSON J T. Analysis of the
[13] LIANG Q, PAN W L, GAO Q Y. Preparation of carboxymethyl structural diversity, substitution patterns, and frequency of nitrogen
starch/polyvinyl-alcohol electrospun composite nanofibers from a heterocycles among US FDA approved pharmaceuticals:
green approach[J]. International Journal of Biological Macromolecules, Miniperspective[J]. Journal of Medicinal Chemistry, 2014, 57(24):
2021, 190: 601-606. 10257-10274.
[14] WANG P, LINARES-PASTÉN J A, ZHANG B Z. Synthesis, [23] CUENCA P, FERRERO S, ALBANI O. Preparation and characterization
molecular docking simulation, and enzymatic degradation of AB-type of cassava starch acetate with high substitution degree[J]. Food
indole-based polyesters with improved thermal properties[J]. Hydrocolloids, 2020, 100: 105430.
Biomacromolecules, 2020, 21(3): 1078-1090. [24] POZO C, RODRíGUEZ-LLAMAZARES S, BOUZA R, et al. Study
[15] LIANG C (梁诚). Indole synthesis technology and application of the structural order of native starch granules using combined FTIR
status[J]. Fine and Specialty Chemicals (精细与专用化学品), 2002, and XRD analysis[J]. Journal of Polymer Research, 2018, 25(12):
10(9): 6-7. 1-8.
[16] ZHAO X (赵鑫), CHANG J (常静). Research and application progress of [25] REN L F (任龙芳), NIU Q X (牛巧宣). Hybrid capped, waterborne
ε-caprolactone and polycaprolactone[J]. Coal and Chemicals (煤炭与 polyurethane with hydrophilic/hydrophobic chain ends[J]. Fine
化工), 2021, 44(4): 130-134. Chemicals (精细化工), 2020, 37(2): 378-384.
[17] LI Y D (李玉东), XU Y (徐源), ZHOU Q (周强), et al. Preparation [26] GUZMAN-PUYOL S, BENÍTEZ J J, HEREDIA-GUERRERO J A.
and performance of polylactic acid-polycaprolactone tissue engineered Transparency of polymeric food packaging materials[J]. Food
fiber ring scaffold[J]. Journal of the Third Military Medical Research International, 2022, 161: 111792.
University (第三军医大学学报), 2014, 36(9): 914-918. [27] ZHAO J, WANG Y S, LIU C Q. Film transparency and opacity
[18] JAMALUDDIN N, HSU Y I, ASOH T A, et al. Optically transparent measurements[J]. Food Analytical Methods, 2022, 15: 2840-2846.
and toughened poly(methyl methacrylate) samples with acylated [28] GOY R C, MORAIS S T, ASSIS O B. Evaluation of the
cellulose nanofibers[J]. ACS Omega, 2021, 6(16): 10752-10758. antimicrobial activity of chitosan and its quaternized derivative on E.
[19] BELLO-PÉREZ L A, AGAMA-ACEVEDO E, ZAMUDIO-FLORES coli and S. aureus growth[J]. Revista Brasileira de Farmacognosia,
P B, et al. Effect of low and high acetylation degree in the morphological, 2016, 26: 122-127.
physicochemical and structural characteristics of barley starch[J]. [29] LI X Y, ILK S, LINARES-PASTÉN J A, et al. Synthesis, enzymatic
LWT-Food Science and Technology, 2010, 43(9): 1434-1440. degradation, and polymer-miscibility evaluation of nonionic
[20] KARPAGAM S, GUHANATHAN S. Phosphorus based indole and antimicrobial hyperbranched polyesters with indole or isatin
imidazole functionalized hyperbranched polyester as antimicrobial functionalities[J]. Biomacromolecules, 2021, 22(5): 2256-2271.
surface coating materials[J]. Progress in Organic Coatings, 2014, [30] ZI Y X, ZHU M J, LI X Y, et al. Effects of carboxyl and aldehyde
77(11): 1901-1910. groups on the antibacterial activity of oxidized amylose[J].
[21] MARGOSHES M, FASSEL V. The infrared spectra of aromatic Carbohydrate Polymers, 2018, 192: 118-125.
(上接第 2277 页) lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(28): 8482-8489.
[21] DENG C, ZHANG S, YANG S Y. Effect of Mn substitution on the
[11] GAO H Y, WU Q Q, GUO M, et al. Rationally fabricating structural morphological and electrochemical behaviors of
Li 2Fe 1–xMn xSiO 4 synthesized via citric acid assisted sol-gel method[J].
nitrogen-doped carbon coated nanocrystalline Li 2FeSiO 4@N-C with
excellent Li-ion battery performances[J]. Electrochimica Acta, 2019, Journal of Alloys and Compounds, 2009, 487(1/2): L18-L23.
318: 720-729. [22] DENG C, ZHANG S, YANG S Y, et al. Synthesis and
2+
2+
2+
[12] QU L, LIU Y, FANG S H, et al. Li 2FeSiO 4 coated by characterization of Li 2Fe 0.97M 0.03SiO 4 (M = Zn , Cu , Ni ) cathode
sorbitanlaurat-derived carbon as cathode of high-performance materials for lithium ion batteries[J]. Journal of Power Sources, 2011,
lithium-ion battery[J]. Electrochimica Acta, 2015, 163: 123-131. 196(1): 386-392.
[13] PAZHANISWAMY S, PARAMESWARAN A K, BALAKRISHNAN [23] ZHANG S, DENG C, FU B L, et al. Doping effects of magnesium on
N, et al. Prediction clue on the fading capacity of multi-walled the electrochemical performance of Li 2FeSiO 4 for lithium ion
carbon nanotube-decorated Li 2(Fe 1–xTi x)SiO 4/C high-performance batteries[J]. Journal of Electroanalytical Chemistry, 2010, 644(2):
cathode materials[J]. Energy and Fuels, 2021, 35(9): 8321-8333. 150-154.
[14] WIRIYA N, CHANTRASUWAN P, KAEWMALA S, et al. Doping [24] QIU H L, YUE H J, ZHANG T, et al. Enhanced electrochemical
effect of manganese on the structural and electrochemical properties performance of Li 2FeSiO 4/C positive electrodes for lithium-ion
of Li 2FeSiO 4 cathode materials for rechargeable Li-ion batteries[J]. batteries via yttrium doping[J]. Electrochimica Acta, 2016, 188:
Radiation Physics and Chemistry, 2020, 171: 108753. 636-644.
[15] ZHANG Q T, JI S K, YAN C, et al. Insights into the porosity and [25] LI Y S, CHENG X, ZHANG Y. On the delithiation mechanism of
electrochemical performance of nano Li 2FeSiO 4 and Li 2FeSiO 4/C Li 2FeSiO 4−yS y compounds: A first-principles investigation[J].
composite cathode materials[J]. Materials Technology, 2022, 37(9): Electrochimica Acta, 2013, 112: 670-677.
1195-1204. [26] CHAE M S, KIM H J, LYOO J, et al. Anomalous sodium storage
[16] SHEN S Y, ZHANG Y, WEI G H, et al. Li 2FeSiO 4/C hollow behavior in Al/F dual-doped P2-type sodium manganese oxide cathode
nanospheres as cathode materials for lithium-ion batteries[J]. Nano for sodium-ion batteries[J]. Advanced Energy Materials, 2020,
Research, 2019, 12(2): 357-363. 10(43): 2002205.
[17] DU X F, ZHAO H L, LU Y, et al. Electrochemical properties of [27] CUI X L, WANG S M, YE X S, et al. Insights into the improved
nanostructured Li 2FeSiO 4/C synthesized by a simple co-precipitation cycle and rate performance by ex-situ F and in-situ Mg dual doping
method[J]. Electrochimica Acta, 2016, 188: 744-751. of layered oxide cathodes for sodium-ion batteries[J]. Energy Storage
[18] ZHANG Q T, YAN C, GUO J H, et al. Mesoporous Li 2FeSiO 4/C Materials, 2022, 45: 1153-1164.
nanocomposites with enhanced performance synthesized from [28] TUO K Y, MAO L P, DING H, et al. Boron and phosphorus
fumed nano silica[J]. Ionics, 2018, 24(9): 2555-2563. dual-doped carbon coating improves electrochemical performances
[19] LI L, HAN E S, MI C, et al. The effect of Ni or Pb substitution on the of LiFe 0.8Mn 0.2PO 4 cathode materials[J]. ACS Applied Energy Materials,
electrochemical performance of Li 2FeSiO 4/C cathode materials[J]. 2021, 4(8): 8003-8015.
Solid State Ionics, 2019, 330: 24-32. [29] OKADA K, KIMURA I, MACHIDA K. High rate capability by
[20] ZHANG S, DENG C, FU B L, et al. Effects of Cr doping on the sulfur-doping into LiFePO 4 matrix[J]. RSC Advances, 2018, 8(11):
electrochemical properties of Li 2FeSiO 4 cathode material for 5848-5853.