Page 207 - 《精细化工)》2023年第10期
P. 207

第 10 期                   杜永梅,等:  氧化玉米淀粉-聚己内酯基抗菌膜的制备及性能                                  ·2285·


            [12]  KAUR  B, ARIFFIN F, BHAT R,  et al. Progress in starch   compounds:  Ⅰ. The out-of-plane CH bending vibrations in the region
                                                                          −1
                 modification in the last decade[J]. Food Hydrocolloids, 2012, 26(2):   625~900 cm [J]. Spectrochimica Acta, 1955, 7: 14-24.
                 398-404.                                      [22]  VITAKU E, SMITH D  T, NJARDARSON J  T. Analysis of the
            [13]  LIANG Q, PAN  W L, GAO  Q  Y.  Preparation of carboxymethyl   structural diversity, substitution patterns, and frequency of nitrogen
                 starch/polyvinyl-alcohol electrospun composite nanofibers from a   heterocycles  among  US  FDA  approved  pharmaceuticals:
                 green approach[J]. International Journal of Biological Macromolecules,   Miniperspective[J]. Journal  of Medicinal Chemistry, 2014, 57(24):
                 2021, 190: 601-606.                               10257-10274.
            [14]  WANG P, LINARES-PASTÉN J A, ZHANG  B Z.  Synthesis,   [23]  CUENCA P, FERRERO S, ALBANI O. Preparation and characterization
                 molecular  docking  simulation, and enzymatic degradation  of AB-type   of cassava starch acetate with high  substitution degree[J]. Food
                 indole-based polyesters with improved thermal properties[J].   Hydrocolloids, 2020, 100: 105430.
                 Biomacromolecules, 2020, 21(3): 1078-1090.    [24]  POZO C, RODRíGUEZ-LLAMAZARES S, BOUZA R, et al. Study
            [15]  LIANG C (梁诚). Indole synthesis technology and application   of the structural order of native starch granules using combined FTIR
                 status[J]. Fine and Specialty Chemicals (精细与专用化学品), 2002,   and XRD analysis[J]. Journal of Polymer Research, 2018, 25(12):
                 10(9): 6-7.                                       1-8.
            [16]  ZHAO X (赵鑫), CHANG J (常静). Research and application progress of   [25]  REN L F (任龙芳), NIU Q X (牛巧宣). Hybrid capped, waterborne
                 ε-caprolactone and polycaprolactone[J]. Coal and Chemicals (煤炭与  polyurethane with hydrophilic/hydrophobic chain ends[J]. Fine
                 化工), 2021, 44(4): 130-134.                        Chemicals (精细化工), 2020, 37(2): 378-384.
            [17] LI Y D (李玉东), XU Y (徐源), ZHOU Q (周强), et al. Preparation   [26]  GUZMAN-PUYOL S, BENÍTEZ J J, HEREDIA-GUERRERO J A.
                 and  performance  of polylactic acid-polycaprolactone tissue  engineered   Transparency of  polymeric food  packaging materials[J]. Food
                 fiber  ring scaffold[J]. Journal of the Third Military Medical   Research International, 2022, 161: 111792.
                 University (第三军医大学学报), 2014, 36(9): 914-918.   [27]  ZHAO J, WANG  Y S,  LIU C Q. Film transparency  and opacity
            [18]  JAMALUDDIN N, HSU Y I, ASOH T A, et al. Optically transparent   measurements[J]. Food Analytical Methods, 2022, 15: 2840-2846.
                 and toughened  poly(methyl methacrylate) samples with acylated   [28]  GOY R  C, MORAIS S T, ASSIS O B. Evaluation of the
                 cellulose nanofibers[J]. ACS Omega, 2021, 6(16): 10752-10758.   antimicrobial activity of chitosan and its quaternized derivative on E.
            [19]  BELLO-PÉREZ L A, AGAMA-ACEVEDO E, ZAMUDIO-FLORES   coli and S. aureus growth[J]. Revista Brasileira de Farmacognosia,
                 P B, et al. Effect of low and high acetylation degree in the morphological,   2016, 26: 122-127.
                 physicochemical  and structural characteristics of  barley starch[J].   [29]  LI X Y, ILK S, LINARES-PASTÉN J A, et al. Synthesis, enzymatic
                 LWT-Food Science and Technology, 2010, 43(9): 1434-1440.   degradation, and polymer-miscibility evaluation  of nonionic
            [20]  KARPAGAM S, GUHANATHAN S. Phosphorus based indole and   antimicrobial hyperbranched polyesters with indole or isatin
                 imidazole functionalized hyperbranched polyester as antimicrobial   functionalities[J]. Biomacromolecules, 2021, 22(5): 2256-2271.
                 surface coating materials[J]. Progress in Organic Coatings,  2014,   [30]  ZI Y X, ZHU M J, LI X Y, et al. Effects of carboxyl and aldehyde
                 77(11): 1901-1910.                                groups on the antibacterial activity of oxidized amylose[J].
            [21]  MARGOSHES  M, FASSEL V.  The  infrared spectra of aromatic   Carbohydrate Polymers, 2018, 192: 118-125.




            (上接第 2277 页)                                           lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(28): 8482-8489.
                                                               [21]  DENG C, ZHANG S, YANG S Y. Effect of Mn substitution on the
            [11]  GAO H  Y, WU Q  Q,  GUO M,  et al. Rationally fabricating   structural morphological and electrochemical behaviors of
                                                                   Li 2Fe 1–xMn xSiO 4 synthesized via citric acid assisted sol-gel method[J].
                 nitrogen-doped carbon coated nanocrystalline Li 2FeSiO 4@N-C with
                 excellent Li-ion battery performances[J]. Electrochimica Acta, 2019,   Journal of Alloys and Compounds, 2009, 487(1/2): L18-L23.
                 318: 720-729.                                 [22]  DENG C, ZHANG S,  YANG  S  Y,  et al. Synthesis and
                                                                                                   2+
                                                                                                      2+
                                                                                               2+
            [12]  QU L, LIU Y, FANG S H,  et al. Li 2FeSiO 4 coated  by   characterization of Li 2Fe 0.97M 0.03SiO 4 (M = Zn , Cu , Ni ) cathode
                 sorbitanlaurat-derived carbon as cathode of high-performance   materials for lithium ion batteries[J]. Journal of Power Sources, 2011,
                 lithium-ion battery[J]. Electrochimica Acta, 2015, 163: 123-131.   196(1): 386-392.
            [13]  PAZHANISWAMY S, PARAMESWARAN A K, BALAKRISHNAN   [23]  ZHANG S, DENG C, FU B L, et al. Doping effects of magnesium on
                 N,  et al. Prediction clue on the fading capacity of multi-walled   the electrochemical performance of Li 2FeSiO 4 for  lithium  ion
                 carbon nanotube-decorated Li 2(Fe 1–xTi x)SiO 4/C high-performance   batteries[J]. Journal of Electroanalytical Chemistry, 2010, 644(2):
                 cathode materials[J]. Energy and Fuels, 2021, 35(9): 8321-8333.   150-154.
            [14]  WIRIYA N, CHANTRASUWAN P, KAEWMALA S, et al. Doping   [24]  QIU H L,  YUE H J, ZHANG T,  et al. Enhanced electrochemical
                 effect of manganese on the structural and electrochemical properties   performance of Li 2FeSiO 4/C positive electrodes for  lithium-ion
                 of Li 2FeSiO 4 cathode materials for rechargeable Li-ion batteries[J].   batteries via yttrium doping[J]. Electrochimica Acta, 2016, 188:
                 Radiation Physics and Chemistry, 2020, 171: 108753.   636-644.
            [15]  ZHANG Q T, JI S K, YAN C, et al. Insights into the porosity and   [25]  LI Y S, CHENG X, ZHANG Y. On the delithiation mechanism of
                 electrochemical performance of nano Li 2FeSiO 4 and Li 2FeSiO 4/C   Li 2FeSiO 4−yS y compounds: A first-principles investigation[J].
                 composite cathode materials[J]. Materials Technology, 2022, 37(9):   Electrochimica Acta, 2013, 112: 670-677.
                 1195-1204.                                    [26]  CHAE M S, KIM H J, LYOO J, et al. Anomalous sodium storage
            [16]  SHEN S Y,  ZHANG Y,  WEI G H,  et al. Li 2FeSiO 4/C hollow   behavior in Al/F dual-doped P2-type sodium manganese oxide cathode
                 nanospheres as cathode  materials for lithium-ion batteries[J]. Nano   for  sodium-ion batteries[J]. Advanced Energy Materials, 2020,
                 Research, 2019, 12(2): 357-363.                   10(43): 2002205.
            [17]  DU X F, ZHAO  H L, LU  Y,  et al. Electrochemical properties of   [27]  CUI X L, WANG S M, YE X S,  et al. Insights into the improved
                 nanostructured Li 2FeSiO 4/C synthesized by a simple co-precipitation   cycle and rate performance by ex-situ F and in-situ Mg dual doping
                 method[J]. Electrochimica Acta, 2016, 188: 744-751.   of layered oxide cathodes for sodium-ion batteries[J]. Energy Storage
            [18]  ZHANG  Q T,  YAN C, GUO J H,  et al. Mesoporous Li 2FeSiO 4/C   Materials, 2022, 45: 1153-1164.
                 nanocomposites with enhanced performance synthesized from   [28]  TUO K  Y, MAO L P, DING H,  et al. Boron and phosphorus
                 fumed nano silica[J]. Ionics, 2018, 24(9): 2555-2563.   dual-doped carbon  coating improves electrochemical performances
            [19]  LI L, HAN E S, MI C, et al. The effect of Ni or Pb substitution on the   of LiFe 0.8Mn 0.2PO 4 cathode materials[J]. ACS Applied Energy Materials,
                 electrochemical performance of  Li 2FeSiO 4/C cathode materials[J].   2021, 4(8): 8003-8015.
                 Solid State Ionics, 2019, 330: 24-32.         [29]  OKADA  K, KIMURA I, MACHIDA K. High rate capability by
            [20]  ZHANG S, DENG C, FU B L,  et al. Effects of Cr doping on the   sulfur-doping into LiFePO 4 matrix[J]. RSC Advances, 2018, 8(11):
                 electrochemical properties  of Li 2FeSiO 4 cathode material for   5848-5853.
   202   203   204   205   206   207   208   209   210   211   212