Page 222 - 《精细化工》2023年第11期
P. 222
·2534· 精细化工 FINE CHEMICALS 第 40 卷
[30] TONG R M, FU R, YANG Z, et al. Efficient degradation of Rhodamine B in water[J]. Chinese Journal of Catalysis, 2015,
sulfachloropyridazine by sulfite activation with CuO-Al 2O 3 composites 36(10): 1785-1797.
under neutral pH conditions: Radical and non-radical[J]. Journal of [36] DONG Z T, NIU C G, GUO H, et al. Anchoring CuFe 2O 4
Environmental Chemical Engineering, 2022, 10(2): 107276. nanoparticles into N-doped carbon nanosheets for peroxymonosulfate
[31] WU L Y, ZHANG Q, HONG J M, et al. Degradation of bisphenol A activation: Builtin electric field dominated radical and non-radical
by persulfate activation via oxygen vacancy-rich CoFe 2O 4–x[J]. process[J]. Chemical Engineering Journal, 2021, 426: 130850.
Chemosphere, 2019, 221: 412-422. [37] KOHANTORABI M, MOUSSAVI G, GIANNAKIS S. A review of
[32] SHAO S, LI X S, GONG Z M, et al. A new insight into the the innovations in metal- and carbon-based catalysts explored for
mechanism in Fe 3O 4@CuO/PMS system with low oxidant dosage[J]. heterogeneous peroxymonosulfate (PMS) activation, with focus on
Chemical Engineering Journal, 2022, 438: 135474. radical vs. non-radical degradation pathways of organic
[33] TINA J Q, LI Y Q, ZHOU X, et al. Overwhelming low ammonia contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957.
escape and low temperature denitration efficiency via MnO x- [38] XIN S S, MA B G, ZHANG C L, et al. Catalytic activation of
decorated two-dimensional MgAl layered double oxides[J]. Chinese peroxydisulfate by alfalfa-derived nitrogen self-doped porous carbon
Journal of Chemical Engineering, 2020, 28(7): 1925-1934. supported CuFeO 2 for nimesulide degradation: Performance, mechanism
[34] WU Y (吴瑶). Rapid degradation of aniline and Rhodamine B in and DFT calculation[J]. Applied Catalysis B: Environmental, 2021,
aqueous solution by persulfate combined with rice straw biochar and 294: 120247.
their mechanisms[D]. Nanjing: Nanjing Agricultural University (南 [39] ZHAO L X, LI M H, LIANG H L, et al. Activation of
京农业大学), 2018. peroxymonosulfate by a stable Co-Mg-Al LDO heterogeneous
[35] HU L X, YANG F, ZOU L P, et al. CoFe/SBA-15 catalyst coupled catalyst for the efficient degradation of ofloxacin[J]. Separation and
with peroxymonosulfate for heterogeneous catalytic degradation of Purification Technology, 2022, 294: 121231.
(上接第 2412 页) [18] NEELGUND G M, OKI A, LUO Z P. ZnO and cobalt phthalocyanine
hybridized graphene: Efficient photocatalysts for degradation of
[8] MA Y, LI J T, LIAO X B, et al. Heterostructure design in bimetallic Rhodamine B[J]. Journal of Colloid and Interface Science, 2014,
phthalocyanine boosts oxygen reduction reaction activity and 430: 257-264.
durability[J]. Advanced Functional Materials, 2020, 30(50): 2005000. [19] DE GENNES P G. Soft matter[J]. Science, 1992, 256(5056):
[9] WU Q, LIU C J, GONG J, et al. Poly(ionic liquid)s as dispersants for 495-497.
facile preparation of hydrophobic porous phthalocyanine complex [20] TAKAHARA Y K, IKEDA S, ISHINO S, et al. Asymmetrically
and application in dye degradation[J]. Applied Surface Science, modified silica particles: A simple particulate surfactant for
2021, 570: 151202. stabilization of oil droplets in water[J]. Journal of the American
[10] SONG X F (宋旭锋), JI H B (纪红兵), ZHOU X T (周贤太), et al. Chemical Society, 2005, 127(17): 6271-6275.
Synthesis of 2,3,9,10,16,17,23,24-octa(perfluorohexyl) cobaltphthalocyanine [21] PARK B J, LEE D. Equilibrium orientation of nonspherical Janus
and its catalytic activity for the oxidation of ethyl benzene[J]. Fine particles at fluid-fluid interfaces[J]. ACS Nano, 2012, 6(1): 782-790.
Chemicals (精细化工), 2015, 32(4): 399-442. [22] GLASER N, ADAMS D J, BOKER A, et al. Janus particles at
[11] IKEUCHI T, MACK J, NYOKONG T, et al. Aggregation control of liquid-liquid interfaces[J]. Langmuir, 2006, 22(12): 5227-5229.
robust water-soluble zinc(Ⅱ) phthalocyanine-based image sensitizers[J]. [23] SUN Y J, LIANG F X, QU X Z, et al. Robust reactive Janus
Langmuir, 2016, 32(45): 11980-11985. composite particles of snowman shape[J]. Macromolecules, 2015,
[12] LI X S, KE M R, HUANG W, et al. A pH-responsive layered double 48(8): 2715-2722.
hydroxide (LDH)-phthalocyanine nanohybrid for efficient photodynamic [24] ZHAO R T, YU X T, SUN D Y, et al. Functional Janus particles
therapy[J]. Chemistry-A European Journal, 2015, 21(8): 3310-3317. modified with ionic liquids for dye degradation[J]. ACS Applied
[13] LAW K Y. Effect of dye aggregation on the photogeneration Nano Materials, 2019, 2(4): 2127-2132.
efficiency of organic photoconductors[J]. The Journal of Physical [25] GORDUK S, AVCIATA O, AVCIATA U. Photocatalytic degradation
Chemistry, 1988, 92(14): 4226-4231. of methylene blue under visible light irradiation by non-peripherally
[14] SESSLER J L, JAYAWICKRAMARAJAH J, GOULOUMIS A, et al. tetrasubstituted phthalocyanine-TiO 2 nanocomposites[J]. Inorganica
Guanosine and fullerene derived de-aggregation of a new phthalocyanine- Chimica Acta, 2018, 471: 137-147.
linked cytidine derivative[J]. Tetrahedron, 2006, 62(9): 2123-2131. [26] WANG Y (王越). Preparation of poly(ionic liquid)/cobalt phthalocyanine
[15] FANG Y, CHEN D J. A novel catalyst of Fe-octacarboxylic acid complexes and their photocatalytic activity[D]. Shenyang: Liaoning
phthalocyanine supported by attapulgite for degradation of Rhodamine University (辽宁大学), 2019.
B[J]. Materials Research Bulletin, 2010, 45(11): 1728-1731. [27] CHEN F, XIE Y D, HE J J, et al. Photo-Fenton degradation of dye in
[16] GORDUK S, AVCIATA O, AVCIATA U. Photocatalytic degradation methanolic solution under both UV and visible irradiation[J]. Journal
of methylene blue under visible light irradiation by non-peripherally of Photochemistry and Photobiology A: Chemistry, 2001, 138(2):
tetrasubstituted phthalocyanine-TiO 2 nanocomposites[J]. Inorganica 139-146.
Chimica Acta, 2018, 471: 137-147. [28] JU L J, WAN Y, WANG X Y, et al. Efficient visible light
[17] WANG R M, WANG H, WANG Y, et al. Preparation and photocatalytic photocatalytic activity of tetranitro substituted cobalt phthalocyanines-
activity of chitosan-supported cobalt phthalocyanine membrane[J]. attapulgite hybrid materials fabricated by ultrasonic impregnation
Coloration Technology, 2014, 130(1): 32-36. method[J]. Optik, 2016, 127(8): 4127-4130.
(上接第 2479 页) of Guizhou Medical University (贵州医科大学学报), 2023, 48(8):
901-907.
[33] DAI Y W, ZHANG C C, ZHAO H X, et al. Chikusetsusaponin V [35] XU R (徐瑞), LIU Z (刘钊), FU Q (付千), et al. Protective effects of
attenuates lipopolysaccharide-induced liver injury in mice[J]. polysaccharides from Panax japonicus on mice with liver injury
Immunopharmacol Immunotoxicol, 2016, 38(3): 167-174. induced by acetaminophen[J]. Journal of South-Central University
[34] WU Z Y (吴震英), QIANG Y Y (钱瑶瑶), DAI X (戴轩), et al. for Nationalities (Natural Science Edition) (中南民族大学学报: 自
Effect of cuproptosis on sepsis-induced acute liver injury[J]. Journal 然科学版), 2020, 39(1): 51-55.