Page 221 - 《精细化工》2023年第11期
P. 221

第 11 期                     温俊宇,等: CuAl-LDO 活化过一硫酸盐降解罗丹明 B                               ·2533·


            化性能更好的原因。                                          [10]  ZHU T, JIANG J  P, WANG J S, et  al. Fe/Co redox and surficial
                                                                   hydroxyl potentiation in the FeCo 2O 4 enhanced Co 3O 4/persulfate
                (2)4 种 CuAl-LDO/PMS 中,CuAl 2:1-LDO/PMS             process for TC degradation[J]. Journal of Environmental Management,
            体系具有最好的催化去除 RhB 效果。在投加 300 mg/L                        2022, 313: 114855.
                                                               [11]  ZHANG  R H,  AI Y J, LU Z  H. Application  of multifunctional
            的 CuAl 2:1-LDO 和 PMS、反应温度为 25  ℃、                      layered double hydroxides for removing environmental  pollutants:
                                                                   Recent experimental and theoretical progress[J]. Journal of Environmental
            pH=5.6、RhB 质量浓度为 100 mg/L 的条件下,30 min
                                                                   Chemical Engineering, 2020, 8(4): 103908.
            内的 RhB 去除率为 97.1%。本文制备的催化剂具有                       [12]  CHEN Y, OUYANG D,  ZHANG  W Y,  et al. Degradation of
                                                                   benzene derivatives in the CuMgFe-LDO/persulfate system: The role
            较大的比表面积、高活度、低成本、避免团聚和浸出,                               of the interaction between the catalyst and target pollutants[J].
            开发了一种绿色高效治理 RhB 染料废水的新方法。                              Journal of Environmental Sciences, 2020, 90: 87-97.
                                                               [13]  SUN P (孙鹏), LIU J P (柳佳鹏),  WANG W D (王维大),  et al.
            随着催化剂用量的增加,RhB 的去除率明显提高;同                              Active carbon enhanced thermal activation of persulfate for
                                                                   degradation of p-nitrophenol[J]. China Environmental Science (中国
            时,CuAl-LDO/PMS 反应体系在较宽的 pH 范围                          环境科学), 2020, 40(11): 4779-4785.
            (3.0~11.0)下对 RhB 也表现出良好的催化性能,酸                     [14]  XUE H H (薛洪海), GAO S Y (高斯屿), FU Y (付依), et al. Review
                                                                   on  degradation  of artificial sweeteners in aqueous solution  by
            性环境会抑制该体系反应活性,较强的碱性条件会明                                ultraviolet activated persulfate technology[J]. Science Technology
            显促进反应进行。25~45  ℃温度范围内,温度越高RhB                          and Engineering (科学技术与工程), 2019, 19(32): 17-23.
                                                               [15]  PENG Y T, TANG H M, YAO B, et al. Activation of
                                                   –
            去除率越高。通过无机阴离子实验表明,HCO 3 对 RhB                          peroxymonosulfate (PMS) by spinel ferrite and their composites in
                                 –
                                       –
            的去除起促进作用,Cl 、NO 3 和 FA 对 RhB 的去除                       degradation of organic pollutants: A review[J]. Chemical Engineering
                                                                   Journal, 2021, 414: 128800.
            起抑制作用。通过重复利用实验(在第 4 次使用中                           [16]  GUNJAKAR J L,  KIM T W, KIM H N, et al. Mesoporous layer-
                                                                   by-layer ordered  nanohybrids  of layered double hydroxide and
            能去除 71.0%的 RhB)和 XPS 结果表明,CuAl 2:1-                    layered metal oxide: Highly active visible light photocatalysts with
            LDO 催化剂具有良好的重复利用性和稳定性。                                 improved chemical stability[J]. J Am Chem Soc, 2011, 133(38):
                                                                   14998-15007.
                (3)由猝灭实验、EPR 和 UV-Vis 光谱分析可                    [17]  WANG F F, ZHANG Y  A,  LIANG  W X, et  al. Non-enzymatic
                                                       –
            以看出,在 RhB 去除过程中产生了大量的 SO 4 •和                          glucose sensor with high sensitivity based on Cu-Al layered double
                                                                   hydroxides[J]. Sensors and Actuators B: Chemical, 2018, 273: 41-47.
            •OH,主要活性自由基为•OH。活性物质作用于芳香                          [18]  FANG X, MEN Y H, WU F, et  al. Improved methanol yield and
            环使染料脱色。                                                selectivity from CO 2 hydrogenation  using a novel Cu-ZnO-ZrO 2
                                                                   catalyst supported on Mg-Al layered  double hydroxide (LDH)[J].
                                                                   Journal of CO 2 Utilization, 2019, 29: 57-64.
            参考文献:                                              [19]  JI Z Y, WANG Y Q, SHEN X P, et al. Facile synthesis and enhanced
                                                                   catalytic performance of reduced graphene oxide decorated with
            [1]   DUAN P H (段磐辉), LI Z H (李增和), ZHANG Y W (张宜文).   hexagonal structure Ni nanoparticles[J]. Journal of Colloid and
                 Research progress of detection technology for Rhodamine  B in   Interface Science, 2017, 487: 223-230.
                 foodstuff[J]. Journal of Food Safety & Quality (食品安全质量检测  [20]  ZHAO X X, ZHOU C G, HAN B, et  al. Growth mechanism of
                 学报), 2020, 11(17): 6014-6022.
            [2]   HONARMANDRAD Z, SUN X, WANG Z H,  et al. Activated   curved Mg-Al-CO 3 layered double hydroxide nanostructures in a
                                                                   one-pot assembly procedure under ambient pressure[J].  RSC
                 persulfate and peroxymonosulfate based advanced oxidation processes   Advances, 2015, 5: 19955-19960.
                 (AOPs) for antibiotics degradation-A review[J]. Water  Resources   [21]  YUAN R X, RAMJAUN S, WANG Z H, et al. Effects of chloride
                 and Industry, 2023, 29: 100194.                   ion  on degradation of Acid Orange 7 by sulfate radical-based
            [3]   DU X D, ZHOU M H. Strategies to enhance catalytic performance of   advanced oxidation process: Implications for  formation  of
                 metal-organic frameworks in sulfate radical-based advanced   chlorinated aromatic compounds[J]. Journal of Hazardous Materials,
                 oxidation  processes for  organic pollutants removal[J]. Chemical   2011, 196: 173-179.
                 Engineering Journal, 2021, 403: 126346.       [22]  BU L J, BI C, SHI Z, et al. Significant enhancement on ferrous/persulfate
            [4]   ZHANG S M (张舒萌), CHENG X X (成先雄), LIAN J F (连军锋),   oxidation with epigallocatechin-3-gallate: Simultaneous  chelating
                 et al. Degradition of orange  Ⅱ  by 3D spherical BiOI coupled with   and reducing[J]. Chemical Engineering Journal, 2017, 321: 642-650.
                 activated persulfate under visible light[J]. Fine Chemicals (精细化  [23]  CH B,  ELDIK  R V. Transition  metal-catalyzed oxidation of
                 工), 2022, 39(11): 2348-2354, 2363.                sulfur(Ⅳ)  oxides.  Atmospheric-relevant processes and mechanisms
            [5]   WEN J Y, AUAN F, YANG L, et al. The activity and mechanism   [J]. Chemical Reviews, 1995, 95:119-190.
                 differences of typical tourmalines in the activation of persulfate for   [24]  GUO  Y P, ZENG Z Q, ZHU  Y  C, et  al. Catalytic oxidation of
                 tetracycline degradation[J]. Journal of Solid State Chemistry, 2022,   aqueous  organic contaminants by persulfate activated with sulfur-
                 314: 123383.                                      doped hierarchically porous carbon  derived from thiophene[J].
            [6]   LI D H, ZHUANG S X, LI S N, et al. Mechanism of the application   Applied Catalysis B: Environmental, 2018, 220: 635-644.
                 of single-atom catalyst-activated PMS/PDS  to the degradation  of   [25]  WANG Z H, YUAN R X, GUO Y G, et al. Effects of chloride ions
                 organic pollutants  in water environment: A review[J]. Journal of   on bleaching of azo dyes by Co /oxone regent: Kinetic analysis[J].
                                                                                       2+
                 Cleaner Production, 2023, 397: 136468.            Journal of Hazardous Materials, 2011, 190(1): 1083-1087.
            [7]   WANG J L, WANG S Z. Activation of persulfate (PS) and   [26]  FANG G  D,  GAO J, DIONYSION D D, et  al. Activation of
                 peroxymonosulfate (PMS) and application for  the degradation  of   persulfate by quinones: Free radical reactions and implication for the
                 emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:   degradation of PCBs[J]. Environmental Science & Technology,
                 1502-1517.                                        2013, 47(9): 4605-4611.
            [8]   PENG Y T, TANG H M, YAO B,  et al. Activation of   [27]  JIANG M D, LU J H, JI Y F, et al. Bicarbonate-activated persulfate
                 peroxymonosulfate (PMS) by spinel ferrite and their composites in   oxidation of acetaminophen[J]. Water Research, 2017, 116: 324-331.
                 degradation of organic pollutants: A Review[J]. Chemical Engineering   [28]  HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced
                 Journal, 2021, 414: 128800.                       oxidation: A review on heterogeneous catalysts and applications[J].
            [9]   LAI S G (赖树锋), LIANG J Z (梁锦芝), XIAO K B (肖开棒), et al.   Applied Catalysis B: Environmental, 2016, 181: 103-117.
                 Visible light assisted peroxymonosulfate activation on Ag modified   [29]  ZHANG Y C, ZHANG Q, HONG J M. Sulfate radical degradation of
                 graphite phase carbon nitride (g-C 3N 4) for Rhodamine  B   acetaminophen by novel iron-copper bimetallic oxidation catalyzed
                 degradationg[J]. Acta Scientiae Circumstantiae (环境科学报), 2021,   by persulfate: Mechanism and degradation pathways[J]. Applied
                 41(5): 1847-1858.                                 Surface Science, 2017, 422: 443-451.
   216   217   218   219   220   221   222   223   224   225   226