Page 34 - 《精细化工》2023年第11期
P. 34

·2346·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [16]  WANG Y, ZHANG L N,  LU  A. Highly stretchable, transparent   electrically conductive, mechanically resistant, strain-sensitive
                 cellulose/PVA composite hydrogel for multiple sensing and   self-healing hydrogels[J]. Cellulose, 2022, 29(10): 5725-5743.
                 triboelectric nanogenerators[J]. Journal of Materials Chemistry-A,   [34]  TONG  R P, CHEN G  X,  TIAN J  F,  et al.  Highly stretchable,
                 2020, 8(28): 13935-13941.                         strain-sensitive, and ionic-conductive cellulose-based hydrogels for
            [17]  HASANIN M, MWAFY E A, YOUSSEF A M. Electrical properties   wearable sensors[J]. Polymers, 2019, 11(12): 2067.
                 of conducting tertiary composite based on biopolymers and   [35]  YAN  L W, ZHOU T, HAN  L,  et al.  Conductive cellulose
                 polyaniline[J]. Journal of Bio- and Tribo-Corrosion, 2021, 7(4): 1-10   bio-nanosheets assembled biostable  hydrogel for reliable bioele-
            [18]  ZHENG C X, LU K Y, LU Y,  et al.  A stretchable, self-healing   ctronics[J]. Advanced Functional Materials, 2021, 31(17): 2010465.
                 conductive hydrogels based on nanocellulose supported graphene   [36]  CHEN W, BU Y H, LI D L,  et al.  High-strength, tough,  and
                 towards wearable monitoring  of  human  motion[J]. Carbohydrate   self-healing hydrogel based on carboxymethyl  cellulose[J].
                 Polymers, 2020, 250: 116905.                      Cellulose, 2020, 27(2): 853-865.
            [19]  LI B G, CHEN Y  R,  HAN Y F,  et al.  Tough, highly resilient and   [37]  YAO X, ZHANG S F, QIAN  L  W,  et al.  Super stretchable,
                 conductive nanocomposite hydrogels reinforced with surface-grafted   self-healing, adhesive ionic conductive hydrogels based on
                 cellulose nanocrystals and reduced graphene oxide for flexible strain   tailor-made ionic liquid for high-performance strain sensors[J].
                 sensors[J]. Colloids and Surfaces A: Physicochemical  and   Advanced Functional Materials, 2022, 32(33): 2204565.
                 Engineering Aspects, 2022, 648: 129341.       [38]  CHEN C C, WANG Y R, MENG T T, et al. Electrically conductive
            [20]  EL-SAYED N S, MOUSSA M A, KAMEL S, et al. Development of   polyacrylamide/carbon nanotube hydrogel: Reinforcing effect from
                 electrical conducting  nanocomposite based on carboxymethyl   cellulose nanofibers[J]. Cellulose, 2019, 26(16): 8843-8851.
                 cellulose hydrogel/silver  nanoparticles@polypyrrole[J]. Synthetic   [39]  HU K (胡魁), WANG Y Y (王映月), WANG H Y (王昊昱), et al.
                 Metals, 2019, 250: 104-114.                       Preparation of high-strength low-temperature resistant nanocellulose/
            [21]  CHEN D J, ZHAO X L, WEI  X R,  et al.  Ultrastretchable, tough,   polyvinyl alcohol conductive composite hydrogel and its application
                 antifreezing, and conductive cellulose hydrogel for wearable strain   in flexible sensing[J]. Journal of Composite Materials (复合材料学
                 sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(47):   报), 2023, 40(2): 1060-1070.
                 53247-53256.                                  [40]  HUANG F, WEI W, FAN Q T, et al. Super-stretchable and adhesive
            [22]  HAN J Q, DING Q Q, MEI C T, et al. An intrinsically self-healing   cellulose nanofiber-reinforced conductive nanocomposite hydrogel
                 and biocompatible electroconductive hydrogel based on nanostructured   for wearable  motion-monitoring sensor[J]. Journal of Colloid and
                 nanocellulose-polyaniline complexes embedded in a viscoelastic   Interface Science, 2022, 615: 215-226.
                 polymer network towards flexible conductors and electrodes[J].   [41]  SUNEETHA M, SUN M O, MO C S,  et al.  Tissue-adhesive,
                 Electrochimica Acta, 2019, 318: 660-672.          stretchable, and self-healable hydrogels based on carboxymethyl
            [23]  XIAO G F, WANG  Y, ZHANG H,  et al.  Cellulose nanocrystal   cellulose-dopamine/PEDOT: PSS  via mussel-inspired chemistry for
                 mediated fast self-healing and  shape  memory conductive hydrogel   bioelectronic applications[J]. Chemical Engineering  Journal, 2021,
                 for wearable strain sensors[J]. International Journal of  Biological   426: 130847.
                 Macromolecules, 2021, 170: 272-283.           [42]  WEI X R, CHEN D J, ZHAO  X L,  et al.  Underwater adhesive
            [24]  JIAO  Y, LU K  Y, LU  Y,  et al.  Highly viscoelastic, stretchable,   HPMC/SiW-PDMAEMA/Fe 3+  hydrogel  with  self-healing,
                 conductive, and self-healing strain sensors based on cellulose   conductive, and reversible adhesive properties[J]. ACS Applied
                 nanofiber-reinforced polyacrylic acid hydrogel[J]. Cellulose, 2021,   Polymer Materials, 2021, 3(2): 837-846.
                 28(7): 4295-4311.                             [43]  SHAN C C, CHE M D, CHOLEWINSKI  A,  et al.  Adhesive
            [25]  JIAO Y,  LU Y,  LU  K  Y,  et al. Highly stretchable and self-healing   hydrogels tailored with cellulose nanofibers and ferric ions for highly
                 cellulose nanofiber-mediated  conductive hydrogel towards strain   sensitive strain sensors[J]. Chemical Engineering Journal, 2022, 450:
                 sensing application[J]. Journal of Colloid and  Interface Science,   138256.
                 2021, 597: 171-181.                           [44]  HU Y, ZHANG M, QIN C R, et al. Transparent, conductive cellulose
            [26]  WANG Y, ZHANG H, ZHANG H C, et al. Synergy coordination of   hydrogel for flexible sensor and triboelectric nanogenerator at
                                                 3+
                 cellulose-based dialdehyde and carboxyl with Fe  recoverable   subzero temperature[J]. Carbohydrate Polymers, 2021, 265: 118078.
                 conductive self-healing hydrogel for sensor[J]. Materials Science and   [45]  WU X Z, PI  W J, HU X X,  et al.  Heat-and freeze-tolerant
                 Engineering: C, 2021, 125: 112094.                organohydrogel with enhanced ionic conductivity over a wide
                                                3+
            [27]  WANG J, DAI T Y, WU H, et al. Tannic acid-Fe  activated rapid   temperature range for highly mechanoresponsive smart paint[J].
                 polymerization of ionic conductive hydrogels with high mechanical   Journal of Colloid and Interface Science, 2022, 608: 2158-2168.
                 properties, self-healing, and self-adhesion for flexible wearable   [46]  WANG S H (王思恒), YANG X X (杨欣欣), HUANG X J (黄旭娟),
                 sensors[J]. Composites Science and Technology, 2022, 221: 109345.     et al.  Preparation  of anti-freezing hydrogels and its application in
            [28]  SONG M L,  YU  H  Y, ZHU J  Y,  et al.  Constructing stimuli-free   flexible electronics[J]. Fine Chemicals (精细化工), 2021, 38(6):
                 self-healing, robust and  ultrasensitive biocompatible hydrogel   1081-1091.
                 sensors with conductive cellulose nanocrystals[J]. Chemical   [47]  ZHANG  X F, MA X F, HOU T,  et al.  Inorganic salts induce
                 Engineering Journal, 2020, 398: 125547.           thermally reversible and anti-freezing cellulose hydrogels[J].
            [29]  YUE L P, ZHANG X Y, WANG Y J, et al. Cellulose nanocomposite   Angewandte Chemie International Edition, 2019, 58(22): 7366-7370.
                 modified conductive self-healing hydrogel with enhanced mechanical   [48]  GE W J, CAO S, YANG Y, et al. Nanocellulose/LiCl systems enable
                 property[J]. European Polymer Journal, 2021, 146: 110258.     conductive and stretchable electrolyte hydrogels with tolerance to
            [30]  CHEN W S, YU H P, LEE S Y, et al. Nanocellulose: A promising   dehydration and extreme cold conditions[J]. Chemical Engineering
                 nanomaterial for advanced electrochemical energy storage[J]. Chem   Journal, 2021, 408: 127306.
                 Soc Rev, 2018, 47(8): 2837-2872.              [49]  WANG Y, ZHANG L N, LU A. Transparent, antifreezing, ionic
            [31]  LIU W (刘伟), WU X (吴显), CHEN X C (陈小澄), et al. Effect of   conductive cellulose hydrogel with  stable sensitivity at subzero
                 carboxylate fillers on  mechanical, conductive, and sensing   temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(44):
                 performance of PVA/CNF hydrogel[J]. China Plastics (中国塑料),   41710-41716.
                 2022, 36(6): 16-23.                           [50]  SHE X H (佘小红), DU J (杜娟), ZHU W L (朱雯莉). Preparation
            [32]  DING  Q Q, XU X  W,  YUE Y  Y,  et al.  Nanocellulose-mediated   and properties of strong polyaniline-polyacrylic acid/polyacrylamide
                 electroconductive  self-healing  hydrogels with high strength,   conductive hydrogel[J]. Acta Materiae Compositae Sinica (复合材料
                 plasticity, viscoelasticity, stretchability, and biocompatibility toward   学报), 2021, 38(4): 1223-1230.
                 multifunctional applications[J]. ACS Applied Materials & Interfaces,   [51]  CHEN Z, LIU J, CHEN Y J, et al. Multiple-stimuli-responsive and
                 2018, 10(33): 27987-28002.                        cellulose conductive ionic hydrogel for smart wearable devices and
            [33]  HUSSAIN I, MA X F, WU L L, et al. Hydroxyethyl cellulose-based   thermal actuators[J]. ACS  Applied Materials & Interfaces, 2021,
   29   30   31   32   33   34   35   36   37   38   39