Page 35 - 《精细化工》2023年第11期
P. 35

第 11 期                         王林林,等:  纤维素基导电水凝胶研究进展                                    ·2347·


                 13(1): 1353-1366.                                 nanocellulose stabilized carbon nanotubes to make pigskin hydrogel
            [52]  QIU Y J (邱艺娟), LIN J W (林佳伟), QIN J R (秦济锐),  et al.   conductive as flexible sensor and supercapacitor electrode: Inspired
                 Double dynamic covalent bond crosslinked  nano-cellulose   from a  chinese cuisine[J]. Composites Science  and Technology,
                 conductive hydrogel for a flexible sensor[J]. Chemical Industry and   2020, 196: 108226.
                 Engineering Progress (化工进展), 2022, 41(8): 4406-4416.     [63]  SABORÍO M G, SVELIC P, CASANOVAS J, et al. Hydrogels for
            [53]  CHENG  Y P,  ZANG J J, ZHAO X, et al. Nanocellulose-enhanced   flexible and compressible free standing cellulose supercapacitors[J].
                 organohydrogel with high-strength, conductivity, and anti-freezing   European Polymer Journal, 2019, 118: 347-357.
                 properties for wearable strain sensors[J]. Carbohydrate  Polymers,   [64]  KE S Q, WANG Z Q, ZHANG K, et al. Flexible conductive cellulose
                 2022, 277: 118872.                                network-based  composite  hydrogel  for  multifunctional
            [54]  FU H C, WANG  B, LI J P,  et al.  A self-healing,  recyclable and   supercapacitors[J]. Polymers, 2020, 12(6): 1369.
                                             3+
                 conductive gelatin/nanofibrillated cellulose/Fe  hydrogel based on   [65]  WANG F Y, DU H W, LIU Y L, et al. Elastic polypyrrole hydrogels
                 multi-dynamic interactions  for a multifunctional strain  sensor[J].   reinforced by TEMPO-oxidized cellulose for supercapacitors[J].
                 Materials Horizons, 2022, 9(5): 1412-1421.        Synthetic Metals, 2021, 282: 116952.
            [55]  LU C  Y, QIU J  H, SUN M X,  et al.  Simple preparation of   [66]  WAN  H  X, QIN C, LU  A. A flexible, robust cellulose/phytic
                 carboxymethyl cellulose-based ionic conductive hydrogels for highly   acid/polyaniline hydrogel for all-in-one supercapacitors and strain
                 sensitive, stable and  durable sensors[J]. Cellulose, 2021, 28(7):   sensors[J]. Journal of Materials Chemistry A, 2022, 10(33):
                 4253-4265.                                        17279-17287.
            [56]  YIN H X, LI S,  XIE H L,  et al.  Construction of  polydopamine   [67]  QUAN Y H, ZHOU W J, WU T, et al. Sorbitol-modified cellulose
                 reduced  graphene  oxide/sodium  carboxymethyl  cellulose/  hydrogel electrolyte derived from wheat straws towards high-
                 polyacrylamide double network conductive hydrogel with high   performance environmentally adaptive flexible zinc-ion batteries[J].
                 stretchable, pH-sensitive and strain-sensing properties[J]. Colloids   Chemical Engineering Journal, 2022, 446: 137056.
                 and Surfaces A: Physicochemical and Engineering Aspects, 2022,   [68]  MA L T, CHEN S M, WANG D H, et al. Super-stretchable zinc air
                 642: 128428.                                      batteries based on an alkaline-tolerant dual-network hydrogel
            [57]  YU J, FENG Y F, SUN D, et al. Highly conductive and mechanically   electrolyte[J]. Energy Weekly News, 2019, 12(9): 1803046.
                 robust cellulose nanocomposite hydrogels with antifreezing and   [69]  SUN Z Z, YANG L, ZHAO J T,  et al.  Natural cellulose-full-
                 antidehydration performances for flexible humidity sensors[J]. ACS   hydrogels bioinspired electroactive artificial muscles: Highly conductive
                 Applied Materials & Interfaces, 2022, 14(8): 10886-10897.     ionic transportation channels and ultrafast electromechanical response[J].
            [58]  WANG Q H, PAN X F, GUO J J,  et al.  Lignin and cellulose   Journal of the Electrochemical Society, 2020, 167(4): 47515.
                 derivatives-induced hydrogel with asymmetrical adhesion, strength,   [70]  XU D F, FAN L, GAO L F, et al. Micro-nanostructured polyaniline
                 and electriferous properties for wearable bioelectrodes and self-   assembled in cellulose matrix  via interfacial polymerization for
                 powered sensors[J]. Chemical Engineering Journal, 2021, 414: 128903.     applications in nerve regeneration[J]. ACS Applied Materials &
            [59]  HAN J Q, WANG H X, YUE Y Y, et al. A self-healable and highly   Interfaces, 2016, 8(27): 17090-17097.
                 flexible supercapacitor integrated  by dynamically  cross-linked   [71]  DENG P P,  CHEN F X, ZHANG H D,  et al.  Conductive,
                 electro-conductive hydrogels based on nanocellulose-templated   self-healing, adhesive, and antibacterial hydrogels based on
                 carbon nanotubes embedded in a viscoelastic polymer network[J].   lignin/cellulose for  rapid MRSA-infected wound  repairing[J]. ACS
                 Carbon, 2019, 149: 1-18.                          Applied Materials & Interfaces, 2021, 13(44): 52333-52345.
            [60]  TRUONG D H, DAM M S, BUJNA E, et al. In situ fabrication of   [72]  LIN F C, ZHENG R T, CHEN J W, et al. Microfibrillated cellulose
                 electrically conducting bacterial cellulose-polyaniline-titanium-dioxide   enhancement to  mechanical and conductive properties of
                 composites with the immobilization of Shewanella xiamenensis and   biocompatible hydrogels[J]. Carbohydrate Polymers, 2019, 205:
                 its application as bioanode in microbial fuel cell[J]. Fuel, 2021, 285:   244-254.
                 119259.                                       [73]  QIN T,  LIAO W C, YU  L,  et al.  Recent progress in conductive
            [61]  WANG  Y Y, WEN Q, CHEN Y,  et al.  Conductive polypyrrole-   self-healing hydrogels for flexible sensors[J]. Journal of Polymer
                 carboxymethyl cellulose-titanium nitride/carbon  brush  hydrogels as   Science, 2022, 60(18): 2607-2634.
                 bioanodes for enhanced energy output in microbial fuel cells[J].   [74]  YANG Y Y, XU  L F, WANG J F,  et al.  Recent advances in
                 Energy, 2020, 204: 117942.                        polysaccharide-based  self-healing  hydrogels  for  biomedical
            [62]  WU  Y, SUN S M, GENG  A B,  et al.  Using TEMPO-oxidized-   applications[J]. Carbohydrate Polymers, 2022, 283: 119161.




            (上接第 2335 页)                                           on Ag/MnO 2 binary catalyst[J]. Journal of Environmental Chemical
                                                                   Engineering, 2019, 7(4): 103212.
            [92]  QIAO J, LIU  Y, HONG F,  et al. A review of catalysts for the   [97]  SHELDON R A, ARENDS I W, DIJKSMAN A. New developments
                 electroreduction of carbon dioxide to produce low-carbon fuels[J].   in catalytic  alcohol oxidations for fine chemicals synthesis[J].
                 Chemical Society Reviews, 2014, 43(2): 631-675.   Catalysis Today, 2000, 57(1/2): 157-166.
            [93]  ANANTHANENI S, RANKIN R. Effect of composition and surface   [98]  SU Y,  WANG L C, LIU  Y  M,  et al. Microwave-accelerated
                 type on activity of transition metal oxides and sulfides for CO 2   solvent-free aerobic oxidation  of  benzyl alcohol  over efficient and
                 electrochemical reduction[J/OL]. Chem  Rxiv, 2020. DOI:10.26434/   reusable manganese oxides[J]. Catalysis Communications, 2007,
                 chemrxiv.12493031.                                8(12): 2181-2185.
            [94]  TIMOSHENKO J, BERGMANN  A, RETTENMAIER C,  et al.   [99]  ELMACI G, OZER D, ZUMREOGLU-KARAN  B. Liquid phase
                 Steering the structure and selectivity of CO 2 electroreduction   aerobic oxidation of benzyl alcohol by using manganese ferrite
                 catalysts by potential pulses[J]. Nature Catalysis, 2022, 5(4): 259-   supported-manganese oxide nanocomposite catalyst[J]. Catalysis
                 267.                                              Communications, 2017, 89: 56-59.
            [95]  PENG X, CHEN Y, MI Y, et al. Efficient electroreduction CO 2 to CO   [100]  HU Z, ZHAO  Y, LIU J,  et al. Ultrafine MnO 2 nanoparticles
                 over MnO 2 nanosheets[J]. Inorganic Chemistry, 2019, 58(14):   decorated on graphene oxide as  a highly efficient and recyclable
                 8910-8914.                                        catalyst for aerobic oxidation of benzyl alcohol[J]. Journal of Colloid
            [96]  SON J, SONG D, LEE K R, et al. Electrochemical reduction of CO 2   and Interface Science, 2016, 483: 26-33.
   30   31   32   33   34   35   36   37   38   39   40