Page 35 - 《精细化工》2023年第11期
P. 35
第 11 期 王林林,等: 纤维素基导电水凝胶研究进展 ·2347·
13(1): 1353-1366. nanocellulose stabilized carbon nanotubes to make pigskin hydrogel
[52] QIU Y J (邱艺娟), LIN J W (林佳伟), QIN J R (秦济锐), et al. conductive as flexible sensor and supercapacitor electrode: Inspired
Double dynamic covalent bond crosslinked nano-cellulose from a chinese cuisine[J]. Composites Science and Technology,
conductive hydrogel for a flexible sensor[J]. Chemical Industry and 2020, 196: 108226.
Engineering Progress (化工进展), 2022, 41(8): 4406-4416. [63] SABORÍO M G, SVELIC P, CASANOVAS J, et al. Hydrogels for
[53] CHENG Y P, ZANG J J, ZHAO X, et al. Nanocellulose-enhanced flexible and compressible free standing cellulose supercapacitors[J].
organohydrogel with high-strength, conductivity, and anti-freezing European Polymer Journal, 2019, 118: 347-357.
properties for wearable strain sensors[J]. Carbohydrate Polymers, [64] KE S Q, WANG Z Q, ZHANG K, et al. Flexible conductive cellulose
2022, 277: 118872. network-based composite hydrogel for multifunctional
[54] FU H C, WANG B, LI J P, et al. A self-healing, recyclable and supercapacitors[J]. Polymers, 2020, 12(6): 1369.
3+
conductive gelatin/nanofibrillated cellulose/Fe hydrogel based on [65] WANG F Y, DU H W, LIU Y L, et al. Elastic polypyrrole hydrogels
multi-dynamic interactions for a multifunctional strain sensor[J]. reinforced by TEMPO-oxidized cellulose for supercapacitors[J].
Materials Horizons, 2022, 9(5): 1412-1421. Synthetic Metals, 2021, 282: 116952.
[55] LU C Y, QIU J H, SUN M X, et al. Simple preparation of [66] WAN H X, QIN C, LU A. A flexible, robust cellulose/phytic
carboxymethyl cellulose-based ionic conductive hydrogels for highly acid/polyaniline hydrogel for all-in-one supercapacitors and strain
sensitive, stable and durable sensors[J]. Cellulose, 2021, 28(7): sensors[J]. Journal of Materials Chemistry A, 2022, 10(33):
4253-4265. 17279-17287.
[56] YIN H X, LI S, XIE H L, et al. Construction of polydopamine [67] QUAN Y H, ZHOU W J, WU T, et al. Sorbitol-modified cellulose
reduced graphene oxide/sodium carboxymethyl cellulose/ hydrogel electrolyte derived from wheat straws towards high-
polyacrylamide double network conductive hydrogel with high performance environmentally adaptive flexible zinc-ion batteries[J].
stretchable, pH-sensitive and strain-sensing properties[J]. Colloids Chemical Engineering Journal, 2022, 446: 137056.
and Surfaces A: Physicochemical and Engineering Aspects, 2022, [68] MA L T, CHEN S M, WANG D H, et al. Super-stretchable zinc air
642: 128428. batteries based on an alkaline-tolerant dual-network hydrogel
[57] YU J, FENG Y F, SUN D, et al. Highly conductive and mechanically electrolyte[J]. Energy Weekly News, 2019, 12(9): 1803046.
robust cellulose nanocomposite hydrogels with antifreezing and [69] SUN Z Z, YANG L, ZHAO J T, et al. Natural cellulose-full-
antidehydration performances for flexible humidity sensors[J]. ACS hydrogels bioinspired electroactive artificial muscles: Highly conductive
Applied Materials & Interfaces, 2022, 14(8): 10886-10897. ionic transportation channels and ultrafast electromechanical response[J].
[58] WANG Q H, PAN X F, GUO J J, et al. Lignin and cellulose Journal of the Electrochemical Society, 2020, 167(4): 47515.
derivatives-induced hydrogel with asymmetrical adhesion, strength, [70] XU D F, FAN L, GAO L F, et al. Micro-nanostructured polyaniline
and electriferous properties for wearable bioelectrodes and self- assembled in cellulose matrix via interfacial polymerization for
powered sensors[J]. Chemical Engineering Journal, 2021, 414: 128903. applications in nerve regeneration[J]. ACS Applied Materials &
[59] HAN J Q, WANG H X, YUE Y Y, et al. A self-healable and highly Interfaces, 2016, 8(27): 17090-17097.
flexible supercapacitor integrated by dynamically cross-linked [71] DENG P P, CHEN F X, ZHANG H D, et al. Conductive,
electro-conductive hydrogels based on nanocellulose-templated self-healing, adhesive, and antibacterial hydrogels based on
carbon nanotubes embedded in a viscoelastic polymer network[J]. lignin/cellulose for rapid MRSA-infected wound repairing[J]. ACS
Carbon, 2019, 149: 1-18. Applied Materials & Interfaces, 2021, 13(44): 52333-52345.
[60] TRUONG D H, DAM M S, BUJNA E, et al. In situ fabrication of [72] LIN F C, ZHENG R T, CHEN J W, et al. Microfibrillated cellulose
electrically conducting bacterial cellulose-polyaniline-titanium-dioxide enhancement to mechanical and conductive properties of
composites with the immobilization of Shewanella xiamenensis and biocompatible hydrogels[J]. Carbohydrate Polymers, 2019, 205:
its application as bioanode in microbial fuel cell[J]. Fuel, 2021, 285: 244-254.
119259. [73] QIN T, LIAO W C, YU L, et al. Recent progress in conductive
[61] WANG Y Y, WEN Q, CHEN Y, et al. Conductive polypyrrole- self-healing hydrogels for flexible sensors[J]. Journal of Polymer
carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as Science, 2022, 60(18): 2607-2634.
bioanodes for enhanced energy output in microbial fuel cells[J]. [74] YANG Y Y, XU L F, WANG J F, et al. Recent advances in
Energy, 2020, 204: 117942. polysaccharide-based self-healing hydrogels for biomedical
[62] WU Y, SUN S M, GENG A B, et al. Using TEMPO-oxidized- applications[J]. Carbohydrate Polymers, 2022, 283: 119161.
(上接第 2335 页) on Ag/MnO 2 binary catalyst[J]. Journal of Environmental Chemical
Engineering, 2019, 7(4): 103212.
[92] QIAO J, LIU Y, HONG F, et al. A review of catalysts for the [97] SHELDON R A, ARENDS I W, DIJKSMAN A. New developments
electroreduction of carbon dioxide to produce low-carbon fuels[J]. in catalytic alcohol oxidations for fine chemicals synthesis[J].
Chemical Society Reviews, 2014, 43(2): 631-675. Catalysis Today, 2000, 57(1/2): 157-166.
[93] ANANTHANENI S, RANKIN R. Effect of composition and surface [98] SU Y, WANG L C, LIU Y M, et al. Microwave-accelerated
type on activity of transition metal oxides and sulfides for CO 2 solvent-free aerobic oxidation of benzyl alcohol over efficient and
electrochemical reduction[J/OL]. Chem Rxiv, 2020. DOI:10.26434/ reusable manganese oxides[J]. Catalysis Communications, 2007,
chemrxiv.12493031. 8(12): 2181-2185.
[94] TIMOSHENKO J, BERGMANN A, RETTENMAIER C, et al. [99] ELMACI G, OZER D, ZUMREOGLU-KARAN B. Liquid phase
Steering the structure and selectivity of CO 2 electroreduction aerobic oxidation of benzyl alcohol by using manganese ferrite
catalysts by potential pulses[J]. Nature Catalysis, 2022, 5(4): 259- supported-manganese oxide nanocomposite catalyst[J]. Catalysis
267. Communications, 2017, 89: 56-59.
[95] PENG X, CHEN Y, MI Y, et al. Efficient electroreduction CO 2 to CO [100] HU Z, ZHAO Y, LIU J, et al. Ultrafine MnO 2 nanoparticles
over MnO 2 nanosheets[J]. Inorganic Chemistry, 2019, 58(14): decorated on graphene oxide as a highly efficient and recyclable
8910-8914. catalyst for aerobic oxidation of benzyl alcohol[J]. Journal of Colloid
[96] SON J, SONG D, LEE K R, et al. Electrochemical reduction of CO 2 and Interface Science, 2016, 483: 26-33.