Page 139 - 《精细化工》2023年第12期
P. 139

第 12 期                   王天宇,等:  一种水性多功能黏结剂对锂硫电池性能的影响                                   ·2681·


            V(DME)=1∶1〕溶剂充分洗涤至溶剂无色透明,并                            (3)电化学及电池性能测试结果表明,SAPEI
            在手套箱室温干燥 12 h 的 SAPEI-64 黏结剂的 XPS                  黏结剂制备的硫正极表现出优异的循环性能与电化
            谱图。由图 11 可知,浸泡样品 S 2p 谱中出现的硫                       学稳定性,使用 SAPEI-64 黏结剂的锂硫电池首次放
            酸盐信号可能是由于 Li 2 S 的湿度敏感性产生的,同                       电比容量能达到 854 mA·h/g,且在 200 次循环后仍
            时对比未处理的 SAPEI-64,浸泡 Li 2 S 6 的 SAPEI-64            有 620 mA·h/g 的放电比容量,容量保持率为 72.6%,
            在 161 和 163 eV 处出现明显的 Li 2 S n 峰,其中,n=4            性能优于 PVDF 黏结剂。
            和 6。因为样品已充分洗涤以保证完全除去物理吸                                SAPEI 作为一种水性多功能黏结剂,具有优异
            附的 Li 2 S 6 ,S 2p 谱中仍出现了明显的 Li 2 S 6 峰,这           的黏结性和抑制多硫化物穿梭的功能,可有效提高
            说明黏结剂与放电产物之间存在很强的化学吸附作                             锂硫电池性能,是一种具有潜在应用价值的锂硫电
            用,SAPEI-64 黏结剂与 LiPS 之间的这种相互作用                     池正极黏结剂材料。
            可以有效地吸附多硫化物,并抑制多硫化物的穿梭,                            参考文献:
            因此提供了更优异的电池循环稳定性。
                                                               [1]   ZOU S L (邹树良), LIU Y H (刘云花), MA X  G (马先果), et al.
                                                                   Research progress  of advanced multifunctional binders forlithium-
                                                                   sulfur batteries[J]. Fine Chemicals (精细化工), 2020, 37(3): 462-471.
                                                               [2]   ZHANG  L, LING M, FENG J,  et al. Effective electrostatic
                                                                   confinement of polysulfides in lithium/sulfur batteries by a functional
                                                                   binder[J]. Nano Energy, 2017, 40: 559-565.
                                                               [3]   ZHAO H J, DENG N P, YAN J, et al. A review on anode for lithium-
                                                                   sulfur  batteries: Progress and prospects[J]. Chemical Engineering
                                                                   Journal, 2018, 347: 343-365.
                                                               [4]   CHENG X B, HUANG J Q, ZHANG Q. Review-Li metal anode in
                                                                   working lithium-sulfur batteries[J]. Journal of the  Electrochemical
                                                                   society, 2018, 165(1): A6058-A6072.
                                                               [5]   YANG Y Y (杨媛媛), YAN Y L (燕映霖), ZHAO Y J (赵颖娟), et al.
                                                                   Preparation and electrical property of eucommia bark residue-based
                                                                   porous C/S composite[J]. New Chemical Materials (化工新型材料),
                                                                   2022, 50(8): 141-146.
                                                               [6]   CHENG R G, XIAN X Y, LIU J X, et al. Carbon coated metal-based
                                                                   composite electrode  materials for lithium sulfur batteries: A
                                                                   review[J]. The Chemical Record, 2022, 22(10): e202200168.
                                                               [7]   DUAN X  B (段旭彬), LI Q F  (李庆福), WEI H K (卫慧凯).
                                                                   Research progress in inhibiting shuttle effect of lithium-sulfur battery
                                                                   and its solving countermeasures[J]. Battery Bimonthly (电池), 2019,
                                                                   49(5): 427-430.
                                                               [8]   XIONG R D (熊润荻), XIANG J W (向经纬), LI X (李想), et al.
                                                                   Synergistic improvement of the overall performance of lithium-sulfur
                                                                   batteries[J]. Chinese Science Bulletin (科学通报), 2022, 67(11):
                                                                   1072-1087.
                                                               [9]   ZUO Y, LIU R L, ZHANG X C, et al. A new supramolecular binder
                                                                   strongly  enhancing  the  electrochemistry  performance  for

                                                                   lithium-sulfur batteries[J]. Chemical Communications, 2019, 55(92):
            图 11   未浸泡 Li 2 S 6 溶液的 SAPEI-64 黏结剂(a)和浸泡             13924-13927.
                   Li 2 S 6 溶液的 SAPEI-64 黏结剂(b)的 XPS 谱图        [10]  RAZZAQ A A, YAO Y Z, SHAH R, et al. High-performance lithium
            Fig. 11    XPS spectra of SAPEI-64 binder without immersion   sulfur batteries enabled  by a synergy between sulfur and carbon
                                                                   nanotubes[J]. Energy Storage Materials, 2019, 16: 194-202.
                   in Li 2 S 6  solution (a) and SAPEI-64 binder immersed   [11]  MIROSHNIKOV  M, DIVYA K P,  BADU G,  et al. Power from
                   in Li 2 S 6  solution (b)                       nature: Designing green battery materials from electroactive quinone

                                                                   derivativesand organic polymers[J]. Journal of Materials Chemistry:
                                                                   A, 2016, 4: 12370-12386.
            3   结论                                             [12]  MATTHEW J L, VIKING S, ANDREAS B, et al. A robust water-
                                                                   based functional binder framework for high-energy lithium-sulfur
                (1)FTIR 谱图分析表明,成功制备了含有酰胺                           batteries[J]. ChemSusChem, 2017, 10: 1-10.
                                                               [13]  DENG P (邓攀), CHEN  C (陈程), ZHANG  L Z  (张灵志).
            键交联结构的 SAPEI 水溶性黏结剂。                                   Application of polyethyleneimine/polyacrylamide composite crosslinked
                (2)通过剥离测试和 SEM 测试证明,相比于                            water-based binder in Si/C anode of lithium-ion  battery[J]. Acta
                                                                   Polymerica Sinica (高分子学报), 2021, 52(11): 1473-1480.
            PVDF、SA、PEI,SAPEI 黏结剂具有优异的黏结强
                                                               [14]  ZHU K S (朱康帅). Self-healing  polyethyleneimine as  binder for
            度,在电池长循环后能够有效保持电极结构的稳定。                                lithium sulfur  batteries[D]. Harbin: Harbin Institute of Technology
                                                                   (哈尔滨工业大学), 2021.
            在多硫化物吸附实验中发现,SAPEI 黏结剂可以有
                                                               [15]  SUN H, LI Z Q,  XIA S X,  et al. High-performance lithium-sulfur
            效吸附多硫化物。进一步通过 XPS 分析验证了                                battery enabled  by jointing cobalt decorated interlayer and
                                                                   polyethyleneimine functionalized separator[J]. Journal of Alloys and
            SAPEI 黏结剂对多硫化物的化学吸附作用,可有效
                                                                   Compounds, 2021, 888: 161459.
            抑制多硫化物的穿梭效应。                                                                     (下转第 2730 页)
   134   135   136   137   138   139   140   141   142   143   144