Page 208 - 《精细化工》2023年第12期
P. 208
·2750· 精细化工 FINE CHEMICALS 第 40 卷
2+
2+
2+
对 Pb 、Zn 、Cu 均有良好的吸附性能; 307: 208-219.
2+
2+
(2)在弱酸性条件下,F 3 O 4 @GM 对 Pb 、Zn 、 [13] MURRAY A, ORMECI B. Use of polymeric sub-micron
ion-exchange resins for removal of lead, copper, zinc, and nickel
2+
Cu 吸附效果较好,pH 越低吸附效果越差。吸附过 from natural waters[J]. Journal of Environmental Sciences, 2019, 75:
程均符合拟二级动力学模型及 Langumiur 等温线模 247-254.
2+
2+
2+
型,Pb 、Zn 、Cu 理论最大吸附容量分别为 555、 [14] FU F L, XIE L P, TANG B, et al. Application of a novel
strategy-Advanced Fenton chemical precipitation to the treatment of
489、125 mg/g; strong stability chelated heavy metal containing wastewater[J].
2+
2+
2+
(3)F 3 O 4 @GM 对 Pb 、Zn 、Cu 的吸附机理 Chemical Engineering Journal, 2012, 189: 283-287.
[15] HUISMAN J L, SCHOUTEN G, SCHULTZ C. Biologically
主要包括静电吸引、离子交换和表面络合作用。材
produced sulphide for purification of process streams, effluent
料表面带负电荷,通过静电吸附将金属阳离子吸附 treatment and recovery of metals in the metal and mining industry[J].
+
2+
在材料表面,Na 和 Ca 与金属离子发生离子交换, Hydrometallurgy, 2006, 83(1/2/3/4): 106-113.
[16] CHUGH M, KUMAR L, SHAH M P, et al. Algal bioremediation of
F 3 O 4 @GM 较大的比表面积和丰富的孔隙结构为吸 heavy metals: An insight into removal mechanisms, recovery of
附提供了较多的活性位点。F 3 O 4 @GM 具有吸附容 by-products, challenges, and future opportunities[J]. Energy Nexus,
量高、可再生和易于磁分离等特点,在重金属污染 2022, 7: 100129.
[17] YUREKLI Y. Removal of heavy metals in wastewater by using
废水领域具有广阔的应用前景。 zeolite nano-particles impregnated polysulfone membranes[J].
Journal of Hazardous Materials, 2016, 309: 53-64.
参考文献: [18] XIANG H R, MIN X B, TANG C J, et al. Recent advances in
[1] TADJARODI A, ABBASZADEH A, TAGHIZADEH M, et al. Solid membrane filtration for heavy metal removal from wastewater: A
phase extraction of Cd(Ⅱ) and Pb(Ⅱ) ions based on a novel mini review[J]. Journal of Water Process Engineering, 2022, 49:
functionalized Fe 3O 4@SiO 2 core-shell nanoparticles with the aid of 103023.
multivariate optimization methodology[J]. Materials Science and [19] WANG Z, LUO P P, ZHA X B, et al. Overview assessment of risk
Engineering: C, 2015, 49: 416-421. evaluation and treatment technologies for heavy metal pollution of
[2] ZHOU Q Q, YANG N, LI Y Z, et al. Total concentrations and water and soil[J]. Journal of Cleaner Production, 2022, 379(2): 134043.
sources of heavy metal pollution in global river and lake water bodies [20] KENG P S, LEE S L, HA S T, et al. Removal of hazardous heavy
from 1972 to 2017[J]. Global Ecology and Conservation, 2020, 22: metals from aqueous environment by low-cost adsorption materials[J].
e00925. Environmental Chemistry Letters, 2014, 12: 15-25.
[3] XING X W, ALHARBI N S, REN X M, et al. A comprehensive [21] LYU Y W, MA B Z, LIU Y B, et al. Adsorption behavior and
review on emerging natural and tailored materials for chromium- mechanism of mixed heavy metal ions by zeolite adsorbent prepared
contaminated water treatment and environmental remediation[J]. from lithium leach residue[J]. Microporous and Mesoporous
Journal of Environmental Chemical Engineering, 2022, 10(2): Materials, 2022, 329: 111553.
2+
2+
2+
107325. [22] BELOVA T P. Adsorption of heavy metal ions (Cu , Ni , Co and
2+
[4] YU G, WANG X S, LIU J, et al. Applications of nanomaterials for Fe ) from aqueous solutions by natural zeolite[J]. Heliyon, 2019,
heavy metal removal from water and soil: A review[J]. Sustainability, 5(9): e02320.
2021, 13(2): 713-727. [23] MA Y, CHENG L, ZHANG D D, et al. Stabilization of Pb, Cd, and
[5] KANG L L, ZENG Y N, WANG Y T, et al. Removal of pollutants Zn in soil by modified-zeolite: Mechanisms and evaluation of
from wastewater using coffee waste as adsorbent: A review[J]. effectiveness[J]. Science of the Total Environment, 2022, 814:
Journal of Water Process Engineering, 2022, 49: 103178. 152746.
[6] HUANG H W (黄宏伟), XIAO H (肖河), WANG D Q (王敦球), [24] ZUO Z L, FENG Y, DONG X J, et al. Advances in recovery of
et al. Pollution characteristics and health risk assessment of heavy valuable metals and waste heat from copper slag[J]. Fuel Processing
metals in the water of Lijiang river basin[J]. Environmental Science Technology, 2022, 235: 107361.
(环境科学), 2021, 42(4): 1714-1723. [25] PHIRI T C, SINGH P, NIKOLOSKI A N. The potential for copper
[7] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: slag waste as a resource for a circular economy: A review-Part Ⅰ[J].
A review[J]. Journal of Environmental Management, 2011, 92(3): Minerals Engineering, 2022, 180: 107474.
407-418. [26] GORAI B, JANA R K. Characteristics and utilisation of copper
[8] ZENG S Y, MA J, YANG Y J, et al. Spatial assessment of farmland slag-A review[J]. Resources, Conservation and Recycling, 2003,
soil pollution and its potential human health risks in China[J]. 39(4): 299-313.
Science of the Total Environment, 2019, 687: 642-653. [27] LE Q, VIVAS E, CHO K. Calcium oxalate/calcium silicate hydrate
[9] SARMA G K, SEN G S, BHATTACHARYYA K G. Nanomaterials (Ca-O x/C-S-H) from blast furnace slag for the highly efficient
2+
2+
as versatile adsorbents for heavy metal ions in water: A review[J]. removal of Pb and Cd from water[J]. Journal of Environmental
Environmental Science and Pollution Research, 2019, 26: 6245-6278. Chemical Engineering, 2021, 9(5): 106287.
[10] DOTANIYA M L, DAS H, MEENA V D. Assessment of chromium [28] ZOU J, LIU X, ZHANG D, et al. Adsorption of three bivalent metals
efficacy on germination, root elongation, and coleoptile growth of by four chemical distinct microplastics[J]. Chemosphere, 2020, 248:
wheat (Triticum aestivum L.) at different growth periods[J]. 126064.
Environmental Monitoring and Assessment, 2014, 186: 2957-2963. [29] WEI Y (韦宇), MU W H (母维宏), LUO Z Q (罗中秋), et al.
[11] DOTANIYA M L, THAKUR J K, MEENA V D, et al. Chromium Adsorption of Cr(Ⅵ) by copper slag based chemically bonded
pollution: A threat to environment-A review[J]. Agricultural Reviews, ceramics: Property and mechanism[J]. Fine Chemicals (精细化工),
2014, 35(2): 153-157. 2022, 39(1): 194-203.
[12] ISLAM M S, SAN C W, NAM B, et al. Needle-like iron [30] TANG Q, WANG K T, YASEEN M, et al. Synthesis of highly
oxide@CaCO 3 adsorbents for ultrafast removal of anionic and efficient porous inorganic polymer microspheres for the adsorptive
2+
cationic heavy metal ions[J]. Chemical Engineering Journal, 2017, removal of Pb from wastewater[J]. Journal of Cleaner Production,