Page 208 - 《精细化工》2023年第12期
P. 208

·2750·                            精细化工   FINE CHEMICALS                                 第 40 卷

                             2+
                 2+
                       2+
            对 Pb 、Zn 、Cu 均有良好的吸附性能;                                307: 208-219.
                                                   2+
                                                        2+
                (2)在弱酸性条件下,F 3 O 4 @GM 对 Pb 、Zn 、              [13]  MURRAY A, ORMECI B. Use of  polymeric sub-micron
                                                                   ion-exchange resins for removal of lead, copper, zinc,  and nickel
               2+
            Cu 吸附效果较好,pH 越低吸附效果越差。吸附过                              from natural waters[J]. Journal of Environmental Sciences, 2019, 75:
            程均符合拟二级动力学模型及 Langumiur 等温线模                           247-254.
                  2+
                        2+
                             2+
            型,Pb 、Zn 、Cu 理论最大吸附容量分别为 555、                      [14]  FU F L, XIE L P,  TANG B,  et al. Application of a novel
                                                                   strategy-Advanced Fenton chemical precipitation to the treatment of
            489、125 mg/g;                                          strong stability chelated heavy  metal containing wastewater[J].
                                         2+
                                               2+
                                   2+
                (3)F 3 O 4 @GM 对 Pb 、Zn 、Cu 的吸附机理                  Chemical Engineering Journal, 2012, 189: 283-287.
                                                               [15]  HUISMAN J L, SCHOUTEN G, SCHULTZ C. Biologically
            主要包括静电吸引、离子交换和表面络合作用。材
                                                                   produced sulphide for purification of process streams, effluent
            料表面带负电荷,通过静电吸附将金属阳离子吸附                                 treatment and recovery of metals in the metal and mining industry[J].
                           +
                                 2+
            在材料表面,Na 和 Ca 与金属离子发生离子交换,                             Hydrometallurgy, 2006, 83(1/2/3/4): 106-113.
                                                               [16]  CHUGH M, KUMAR L, SHAH M P, et al. Algal bioremediation of
            F 3 O 4 @GM 较大的比表面积和丰富的孔隙结构为吸                          heavy metals:  An insight into removal mechanisms, recovery of
            附提供了较多的活性位点。F 3 O 4 @GM 具有吸附容                          by-products, challenges, and future opportunities[J]. Energy Nexus,
            量高、可再生和易于磁分离等特点,在重金属污染                                 2022, 7: 100129.
                                                               [17]  YUREKLI Y.  Removal of heavy  metals in wastewater  by using
            废水领域具有广阔的应用前景。                                         zeolite nano-particles impregnated polysulfone membranes[J].
                                                                   Journal of Hazardous Materials, 2016, 309: 53-64.
            参考文献:                                              [18]  XIANG H R, MIN X  B, TANG  C J, et al. Recent advances in
            [1]   TADJARODI A, ABBASZADEH A, TAGHIZADEH M, et al. Solid   membrane filtration for heavy  metal  removal from wastewater:  A
                 phase extraction  of Cd(Ⅱ) and Pb(Ⅱ) ions based  on a novel   mini review[J]. Journal of  Water Process Engineering, 2022, 49:
                 functionalized Fe 3O 4@SiO 2 core-shell nanoparticles with the aid of   103023.
                 multivariate optimization methodology[J]. Materials Science and   [19]  WANG Z, LUO P P, ZHA X B, et al. Overview assessment of risk
                 Engineering: C, 2015, 49: 416-421.                evaluation and treatment technologies  for  heavy metal pollution of
            [2]   ZHOU Q  Q,  YANG N, LI  Y Z,  et al. Total concentrations and   water and soil[J]. Journal of Cleaner Production, 2022, 379(2): 134043.
                 sources of heavy metal pollution in global river and lake water bodies   [20]  KENG P S, LEE S L, HA S T, et al. Removal of hazardous heavy
                 from 1972 to 2017[J]. Global Ecology and Conservation, 2020, 22:   metals from aqueous environment by low-cost adsorption materials[J].
                 e00925.                                           Environmental Chemistry Letters, 2014, 12: 15-25.
            [3]   XING X W, ALHARBI N S, REN  X M,  et al. A comprehensive   [21]  LYU Y W,  MA B  Z,  LIU Y B,  et al. Adsorption behavior and
                 review on emerging natural and tailored  materials for chromium-   mechanism of mixed heavy metal ions by zeolite adsorbent prepared
                 contaminated water treatment  and environmental remediation[J].   from lithium leach residue[J]. Microporous and Mesoporous
                 Journal of Environmental Chemical Engineering, 2022, 10(2):   Materials, 2022, 329: 111553.
                                                                                                  2+
                                                                                                         2+
                                                                                                     2+
                 107325.                                       [22]  BELOVA T P. Adsorption of heavy metal ions (Cu , Ni , Co  and
                                                                    2+
            [4]   YU G, WANG X S, LIU J, et al. Applications of nanomaterials for   Fe ) from aqueous solutions by  natural zeolite[J]. Heliyon, 2019,
                 heavy metal removal from water and soil: A review[J]. Sustainability,   5(9): e02320.
                 2021, 13(2): 713-727.                         [23]  MA Y, CHENG L, ZHANG D D, et al. Stabilization of Pb, Cd, and
            [5]   KANG L L, ZENG Y N, WANG Y T, et al. Removal of pollutants   Zn in soil by modified-zeolite: Mechanisms and evaluation of
                 from wastewater using coffee waste as adsorbent: A review[J].   effectiveness[J]. Science of the Total Environment, 2022, 814:
                 Journal of Water Process Engineering, 2022, 49: 103178.   152746.
            [6]   HUANG  H W (黄宏伟), XIAO H (肖河), WANG D  Q (王敦球),   [24]  ZUO  Z  L, FENG  Y, DONG X J,  et al. Advances in recovery of
                 et al. Pollution characteristics and health risk assessment of heavy   valuable metals and waste heat from copper slag[J]. Fuel Processing
                 metals in the water of Lijiang river basin[J]. Environmental Science   Technology, 2022, 235: 107361.
                 (环境科学), 2021, 42(4): 1714-1723.               [25]  PHIRI T C, SINGH P, NIKOLOSKI A N. The potential for copper
            [7]   FU F L, WANG Q. Removal of heavy metal ions from wastewaters:   slag waste as a resource for a circular economy: A review-Part  Ⅰ[J].
                 A review[J]. Journal of Environmental Management, 2011, 92(3):   Minerals Engineering, 2022, 180: 107474.
                 407-418.                                      [26]  GORAI B, JANA  R K. Characteristics and utilisation  of copper
            [8]   ZENG S Y, MA J, YANG Y J, et al. Spatial assessment of farmland   slag-A review[J].  Resources, Conservation and Recycling, 2003,
                 soil pollution and its potential human health risks in China[J].   39(4): 299-313.
                 Science of the Total Environment, 2019, 687: 642-653.   [27]  LE Q, VIVAS E, CHO K. Calcium oxalate/calcium silicate hydrate
            [9]   SARMA G K, SEN G S, BHATTACHARYYA K G. Nanomaterials   (Ca-O x/C-S-H) from blast furnace slag for the highly efficient
                                                                            2+
                                                                                  2+
                 as versatile adsorbents for heavy metal ions in water: A review[J].   removal of Pb  and Cd  from water[J]. Journal of Environmental
                 Environmental Science and Pollution Research, 2019, 26: 6245-6278.   Chemical Engineering, 2021, 9(5): 106287.
            [10]  DOTANIYA M L, DAS H, MEENA V D. Assessment of chromium   [28]  ZOU J, LIU X, ZHANG D, et al. Adsorption of three bivalent metals
                 efficacy on germination, root elongation, and coleoptile growth of   by four chemical distinct microplastics[J]. Chemosphere, 2020, 248:
                 wheat (Triticum aestivum L.) at different growth  periods[J].   126064.
                 Environmental Monitoring and Assessment, 2014, 186: 2957-2963.     [29]  WEI Y (韦宇), MU  W H (母维宏), LUO Z Q (罗中秋),  et al.
            [11]  DOTANIYA M L,  THAKUR J K, MEENA V D, et al. Chromium   Adsorption of Cr(Ⅵ) by  copper slag based chemically bonded
                 pollution: A threat to environment-A review[J]. Agricultural Reviews,   ceramics: Property and mechanism[J].  Fine Chemicals (精细化工),
                 2014, 35(2): 153-157.                             2022, 39(1): 194-203.
            [12]  ISLAM M S, SAN  C  W, NAM B,  et al. Needle-like iron   [30]  TANG Q, WANG K T,  YASEEN  M,  et al. Synthesis of highly
                 oxide@CaCO 3  adsorbents for ultrafast removal of anionic and   efficient  porous inorganic  polymer microspheres  for the adsorptive
                                                                            2+
                 cationic heavy  metal ions[J]. Chemical Engineering Journal, 2017,   removal of Pb  from wastewater[J]. Journal of Cleaner Production,
   203   204   205   206   207   208   209   210   211   212   213