Page 209 - 《精细化工》2023年第12期
P. 209

2+
                                                                             2+
                                                                       2+
             第 12 期             陆   艳,等:  铜渣铁基类沸石地质聚合物吸附 Pb 、Cu 、Zn 性能及机理                            ·2751·
                 2018, 193: 351-362.                           [42]  WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers
            [31]  OUKI S K, KAVANNAGH M. Performance of natural zeolites for   for treatment of industrial solid waste containing heavy  metals:
                 the treatment of mixed  metal-contaminated  effluents[J]. Waste   State-of-the-art review[J]. Journal of Cleaner Production, 2023, 390:
                 Management & Research, 1997, 15(4): 383-394.      136053.
            [32]  ZAMZOW M J,  EICHBAUM B R, SANDGREN  K  R,  et al.   [43]  LEE W K W, VAN DEVENTER J S J. Structural reorganisation of
                 Removal of heavy metals and other cations from wastewater using   class fly ash in alkaline silicate solutions[J]. Colloids and Surfaces A:
                 zeolites[J]. Separation Science and Technology, 1990, 25(13/14/15):   Physicochemical and Engineering Aspects, 2002, 211(1): 49-66.
                 1555-1569.                                    [44]  NAZER A, PAYA J, BORRACHERO M V,  et al. Use of ancient
            [33]  HE K, CHEN Y C, TANG Z H, et al. Removal of heavy metal ions   copper slags in Portland cement and alkali activated cement matrices[J].
                 from aqueous  solution by zeolite synthesized from fly ash[J].   Journal of Environmental Management, 2016, 167: 115-123.
                 Environmental Science and Pollution Research, 2016, 23(3): 2778-   [45]  YAN Z H, SUN Z P, YANG J B, et al. Mechanical performance and
                 2788.                                             reaction mechanism of copper slag activated with sodium silicate or
            [34]  HUANG C,  CHUNG Y  C,  LIOU M  R. Adsorption of Cu(Ⅱ) and   sodium hydroxide[J]. Construction and Building Materials, 2021,
                 Ni(Ⅱ) by pelletized biopolymer[J]. Journal of Hazardous Materials,   266: 120900.
                 1996, 45(2): 265-277.                         [46]  WANG Z X (王志学), WANG C L (王彩丽), WANG B (王斌), et al.
            [35]  SCHMUHL R, KRIEG H M, KEIZER K. Adsorption of Cu(Ⅱ) and   Preparation of Mg(OH) 2@fly ash composite and its removal of heavy
                 Cr(Ⅵ) ions by chitosan: Kinetics and equilibrium studies[J]. Water   metal ions from aqueous solution[J].  China Environmental Science
                 SA, 2001, 27(1): 1-8.                             (中国环境科学), 2022, 42(12): 5713-5724.
            [36]  VENGRIS T, BINKIEN R, SVEIKAUSKAIT A. Nickel, copper and   [47]  GRBA N, BALDERMANN A, DIETZEl M. Novel green technology
                 zinc removal from waste water by  a  modified clay sorbent[J].   for wastewater treatment: Geo-material/geopolymer applications for
                 Applied Clay Science, 2001, 18(3): 183-190.       heavy metal removal from aquatic media[J]. International Journal of
            [37]  MONSER L, ADHOUM N. Modified activated carbon for the   Sediment Research, 2023, 38(1): 33-48.
                 removal of copper, zinc, chromium and cyanide from wastewater[J].   [48]  AROKIASAMY P, ABDULLAH M M A B, ABD RAHIM S Z, et al.
                 Separation and Purification Technology, 2002, 26(2/3): 137-146.   Diverse material based geopolymer towards heavy metals removal: A
            [38]  SUDAGAR A J, ANDREJKOVICOVA S, ROCHA F,  et al.   review[J]. Journal of Materials Research and Technology, 2023, 23:
                 Compressive strength and heavy metal adsorption of cork residue,   126-156.
                 natural zeolite, and low-grade metakaolin-based  geopolymers[J].   [49]  LI Y (李娅), MA F Y (马飞跃), ZHANG M (张明), et al. Preparation
                 Construction and Building Materials, 2023, 366: 130125.   of modified pectin-based magnetic microspheres with different sizes
                                                                                         2+
            [39]  HUANG  X R,  ZHAO H H, ZHANG G B,  et al. Potential of   and the adsorption properties of Pb [J]. Materials Reports (材料导
                 removing Cd(Ⅱ) and Pb(Ⅱ) from contaminated water using a newly   报), 2023, (9): 1-22.
                 modified fly ash[J]. Chemosphere, 2020, 242: 125148.   [50]  PENG X Y, LIU W G, LIU W B, et al. Preparation of efficient and
                                                                                    2+
                                                                                          2+
            [40]  AN Q, PAN  H M, ZHAO  Q X,  et al. Strength development and   economical adsorbent for Cu  and Pb  adsorption via modifying the
                 microstructure of sustainable geopolymers made from alkali-activated   silicon-oxygen structure of leaching residues[J]. Surfaces  and
                 ground granulated  blast-furnace slag, calcium carbide residue, and   Interfaces, 2022, 31: 102008.
                 red mud[J]. Construction and Building Materials, 2022, 356: 129279.   [51]  WANG Z K (王忠凯), JI J R (季军荣), TANG R (汤睿),  et al.
            [41]  MEHTA A, SIDDIQUE  R. An overview of geopolymers derived   Preparation of dual organic modified magnetic bentonite for Cu(Ⅱ)
                 from industrial by-products[J]. Construction and Building Materials,   and Zn(Ⅱ ) adsorption[J]. Journal of Chemical Engineering of
                 2016, 127: 183-198.                               Chinese Universities (高校化学工程学报), 2022, 36(2): 276-286.





            (上接第 2621 页)                                           properties  of nontoxic plasticizers for polyvinyl chloride predicted
            [72]  JOANNA C, EWA P, ROMAN T. Recent attempts in the design of   from molecular dynamics simulations[J]. ACS Applied Materials &
                 efficient PVC plasticizers with reduced  migration[J]. Materials,   Interfaces, 2023, 15(20): 24858-24867.
                 2021, 14(4): 844.                             [79]  LIU D K, SHEN Y R, WAI P T, et al. An efficient plasticizer based
            [73]  MARCILLA A, GARCÍA S, GARCÍ ́ A-QUESADA J C. Study of the   on waste cooking oil: Structure and application[J]. Journal of Applied
                 migration of PVC plasticizers[J]. Journal of Analytical and Applied   Polymer Science, 2020, 138(13): 50128.
                 Pyrolysis, 2004, 71(2): 457-463.              [80]  OMRANI I, AHMADI  A, FARHADIAN A, et al. Synthesis  of a
            [74]  CHEN J, NIE X A, JIANG J C. Synthesis of a novel bio-oil-based   bio-based plasticizer from oleic acid and its evaluation in PVC
                 hyperbranched ester plasticizer and its effects on poly(vinyl chloride)   formulations[J]. Polymer Testing, 2016, 56: 237-244.
                 soft films[J]. ACS Omega, 2020, 5(10): 5480-5486.   [81]  JIA P Y, ZHANG M, HU L H, et al. Green plasticizers derived from
            [75]  MARCILLA A, GARCIA S, GARCIA-QUESADA J C. Migrability   soybean oil for  poly(vinyl chloride) as  a renewable resource
                 of PVC plasticizers[J]. Polymer Testing, 2008, 27(2): 221-233.   material[J].  Korean Journal of Chemical Engineering, 2016, 33(3):
            [76]  JIA P  Y, MA  Y, KONG Q,  et al. Graft modification  of  polyvinyl   1080-1087.
                 chloride with epoxidized biomass-based monomers for  preparing   [82]  FENG S, ZHANG P B, JIANG P P, et al. Synthesis and application
                 flexible polyvinyl chloride materials without plasticizer migration[J].   of high-stability bio-based plasticizer derived from ricinoleic acid[J].
                 Materials Today Chemistry, 2019, 13(C): 49-58.    European Polymer Journal, 2022, 169: 111125.
            [77]  MA  Y F, LIAO  S L, LI Q G,  et al. Physical and chemical   [83]  PAN S Y, HOU D F, YANG G F, et al. Epoxidized methyl ricinoleate
                 modifications of poly(vinyl chloride) materials to prevent plasticizer   bio-plasticizer with a pendant acetate ester for PVC artificial
                 migration-Still on  the run[J]. Reactive and Functional  Polymers,   material: circumventing existing  limit on achievable migration
                 2020, 147(C): 104458.                             resistance[J]. Journal of Leather Science and Engineering, 2019,
            [78]  SNIGDHA S J, HEAVEN S C, TRIDIP D, et al. Thermomechanical   1(1): 1-10
   204   205   206   207   208   209   210   211   212   213   214