Page 219 - 《精细化工》2023年第12期
P. 219

第 12 期                   谢碧梅,等:  高活性 Cu-MnO 2 类氧化物纳米酶降解罗丹明 B                            ·2761·


            参考文献:                                                  36(5): 527-534.
                                                               [18]  LIU M X, ZHANG H, CHEN S, et al. MnO 2-graphene oxide hybrid
            [1]   XIAO Y, HUO W, YIN S N, et al. One-step hydrothermal synthesis
                                                                   nano material with oxidase-like activity for  ultrasensitive
                 of Cu-doped MnO 2 coated diatomite for degradation of methylene
                                                                   colorimetric detection of cancer cells[J]. Analytical and Bioanalytical
                 blue in Fenton-like system[J]. Journal Colloid and Interface Science,
                                                                   Chemistry, 2021, 413: 4451-4458.
                 2019, 556: 466-475.                           [19]  WAN  Y, QI P, ZHANG D, et  al.  Manganese oxide nanowire-
            [2]   LIU X H, LU S Y, GUO W, et al. MnO 2 aerogels for highly efficient   mediated enzyme-linked immunosorbent  assay[J]. Biosens Bioelectron,
                 oxidative degradation of Rhodamine  B[J]. RSC Advances, 2017,   2012, 33 (1): 69-74.
                 7(48): 30283-30288.                           [20]  ZHENG Y N, XU D P, SUN L X, et al. Construction of a bioinspired
            [3]   XU Y L, REN B, WANG R, et al. Facile preparation of rod-like MnO   Fe 3O 4/N-HCS nanozyme for highly sensitive detection of GSH[J].
                 nanomixtures via hydrothermal approach and highly efficient removal of   Colloids and Surfaces A: Physicochemical and Engineering Aspects,
                 methylene blue for wastewater treatment[J]. Nanomaterials, 2019,   2022, 648: 129046.
                 9(1): 1-16.                                   [21]  TANG M L, ZHANG  Z  C, SUN  T D,  et al. Manganese-based
            [4]   SABNA V, THAMPI S G, CHANDRAKARAN S. Degradation of   nanozymes: Preparation, catalytic  mechanisms,  and biomedical
                 Rhodamine B with manganese dioxide nanorods[J]. Journal of Water   applications[J]. Advanced Healthcare Materials, 2022, 11(21): 2201733.
                 and Health, 2018, 16(5/6): 846-856.           [22]  YANG R J, FAN  Y Y, YE R Q, et  al. MnO 2-based materials for
            [5]   SELLAOUI L, GOMEZ-AVILES A, DHAOUADI, et al. Adsorption   environmental applications[J]. Advanced Materials, 2021, 33(9):
                 of emerging pollutants on lignin-based activated carbon: Analysis of   2004862.
                 adsorption mechanism via characterization, kinetics and equilibrium   [23]  GAO J J, JIA C M, ZHANG L P, et al. Tuning chemical bonding of
                 studies[J]. Chemical Engineering Journal, 2023, 452: 139399.   MnO 2 through transition-metal doping for enhanced CO oxidation[J].
            [6]   LIU X,  HUANG  Y, ZHAO P  Q,  et al. Precise Cu localization-   Journal of Catalysis, 2016, 341: 82-90.
                                                               [24]  YANG Y Y, ZHANG P P, HU K S, et al. Sustainable redox processes
                 dependent catalytic degradation  of  organic pollutants  in water[J].
                                                                   induced by peroxymonosulfate and  metal doping  on  amorphous
                 ChemCatChem, 2019, 12(1): 175-180.
                                                                   manganese dioxide for nonradical degradation of water contaminants[J].
            [7]   GAN J S, MUHAMMAD B  L, LI  X B,  et al. Peroxidases-based
                                                                   Applied Catalysis B: Environmental, 2021, 286: 119903.
                 enticing biotechnological platforms for biodegradation and
                                                               [25]  HUANG Y L, TIAN X K, NIE Y L, et al. Enhanced peroxymonosulfate
                 biotransformation of emerging contaminants[J]. Chemosphere, 2022,
                                                                   activation for phenol degradation over MnO 2 at pH 3.5~9.0  via
                 307: 136035.
                                                                   Cu(Ⅱ) substitution[J]. Journal of Hazardous Materials, 2018, 360:
            [8]   ZHANG Y T, LIU C, XU B B, et al. Degradation of benzotriazole by
                                                                   303-310.
                 a novel Fenton-like reaction with mesoporous Cu/MnO 2: Combination of
                                                               [26]  CHIAM S, PUNG  S, YEOH F Y,  et al. Highly efficient oxidative
                 adsorption and catalysis oxidation[J]. Applied Catalysis B:
                                                                   degradation of organic dyes by manganese dioxide nanoflowers[J].
                 Environmental, 2016, 199: 447-457.
                                                                   Materials Chemistry and Physics, 2022, 280: 125848.
            [9]   BI X R, HUANG Y, LIU X, et al. Oxidative degradation of aqueous   [27]  HASTUTI E, SUBHAN A, AMONPATTARATKIT  P,  et al.
                 organic contaminants over shape-tunable MnO 2 nanomaterials  via   Oxidation  state, local structure distortion, and defect structure
                 peroxymonosulfate activation[J]. Separation and Purification Technology,   analysis of Cu doped alpha-MnO 2 correlated to conductivity and
                 2021, 275: 119141.                                dielectric properties[J]. Heliyon, 2022, 8(11): 11459.
            [10]  RAMAKRISHNA D, RAJKUMAR B, MADHUSUDHAN A, et al.   [28]  JIANG G H (蒋光辉), CHEN H Q (陈海清). Preparation of α-MnO 2
                 Effective fabrication of cellulose nanofibrils supported Pd   nanoparticles by liquid phase co-precipitation[J]. Hunan Nonferrous
                 nanoparticles as a novel nanozyme with peroxidase and oxidase-like   Metals (湖南有色金属), 2018, 34(4): 49-53.
                 activities for efficient dye degradation[J]. Journal of Hazardous   [29]  SONG H, WANG Y H, WANG G Q, et al. Ultrathin two-dimensional
                 Materials, 2022, 436: 129165.                     MnO 2 nanosheet as a stable coreactant of 3,3′,5,5′-tetramethylbenzidine
            [11]  LEONTIE A R, RDUCAN A, CULI D C, et al. Laccase immobilized   chromogenic substrate for  visual and colorimetric detection of
                 on chitosan-polyacrylic acid  microspheres as highly efficient   iron(Ⅱ) ion[J]. Microchimica Acta, 2017, 184(9): 3399-3404.
                 biocatalyst for naphthol green B and indigo carmine degradation[J].   [30]  EL-NAGGAR M  E, ABDEL-ATY  A M, WASSEL  A R,  et al.
                 Chemical Engineering Journal, 2022, 439: 135654.   Immobilization of horseradish peroxidase on cationic  microporous
            [12]  ZHANG J C,  BAI Q, BI X L,  et al. Piezoelectric enhanced   starch:  Physico-bio-chemical characterization and removal of phenolic
                 peroxidase-like activity of metal-free sulfur  doped graphdiyne   compounds[J]. International Journal  of Biological Macromolecules,
                 nanosheets for efficient water pollutant degradation and bacterial   2021, 181: 734-742.
                                                               [31]  MENG  Y X, ZHAO K F, ZHANG  Z K,  et al. Effects  of crystal
                 disinfection[J]. Nano Today, 2022, 43: 101429.
                                                                   structure on the activity of MnO 2 nanorods oxidase mimics[J]. Nano
            [13]  HUANG  Y Y,  REN J S, QU X G. Nanozymes: Classification,
                                                                   Research, 2020, 13(3): 709-718.
                 catalytic  mechanisms,  activity regulation, and applications[J].
                                                               [32]  XING Y Y, CHEN M L, ZHAO Y Q, et al. Triple-enzyme mimetic
                 Chemical Reviews, 2019, 119(6): 4357-4412.
                                                                   activity of Fe 3O 4@C@MnO 2 composites derived from metal-organic
            [14]  GUAN H N (关桦楠), XUE Y (薛悦), PENG B (彭勃), et al. Rapid
                                                                   frameworks and their application to colorimetric biosensing of
                 removal of organic pollutants  from  water using  Fenton reaction
                                                                   dopamine[J]. Microchimica Acta, 2022, 189: 12.
                 nanometrics[J]. Fine Chemicals (精细化工), 2020, 37(9): 1738-1743.
                                                               [33]  LIU  Y,  NIU M S, YI X L,  et al. Boron  vacancies of mesoporous
            [15]  SHEN X M, LIU W Q, GAO X J, et al. Mechanisms of oxidase and              3+
                                                                   MnO 2 with strong acid sites, free Mn  species and  macropore
                 superoxide dismutation-like activities of gold, silver, platinum, and
                                                                   decoration for efficiently decontaminating organic and heavy  metal
                 palladium, and their alloys: A general way to the activation of
                                                                   pollutants in black-odorous waterbodies[J]. Applied Surface Science,
                 molecular oxygen[J]. Journal  of the  American Chemical Society,
                                                                   2021, 561: 150081.
                 2015, 137(50): 15882-15891.                   [34]  BHOWMICK S,  MOI C T, KALITA N,  et al. Spontaneous
            [16]  LIU Q W, ZHANG A, WANG R H, et al. A review on metal- and   Fenton-like dye degradation in clustered-petal di-manganese copper
                 metal oxide-based nanozymes: Properties, mechanisms, and applications[J].   oxide by virtue of self-cyclic redox couple[J]. Journal of Environmental
                 Nano-Micro Letters, 2021, 13(1): 147-199.         Chemical Engineering, 2021, 9(5): 106094.
            [17]  ZHENG Y N (郑燕宁), JI J R (季军荣), LIANG X L (梁雪玲), et al.   [35]  WANG L (王磊), CHENG X X (成先雄), LIAN J F (连军锋), et al.
                 Study on the properties of nitrogen-doped  hollow carbon  ball   Degradation of azo dye by catalyzed persulfate with spinel c-CuFe 2O 4[J].
                 oxides[J]. Journal  of Inorganic Materials (无机材料学报), 2021,   Fine Chemicals (精细化工), 2021, 38(10): 2117-2124.
   214   215   216   217   218   219   220   221   222   223   224