Page 219 - 《精细化工》2023年第12期
P. 219
第 12 期 谢碧梅,等: 高活性 Cu-MnO 2 类氧化物纳米酶降解罗丹明 B ·2761·
参考文献: 36(5): 527-534.
[18] LIU M X, ZHANG H, CHEN S, et al. MnO 2-graphene oxide hybrid
[1] XIAO Y, HUO W, YIN S N, et al. One-step hydrothermal synthesis
nano material with oxidase-like activity for ultrasensitive
of Cu-doped MnO 2 coated diatomite for degradation of methylene
colorimetric detection of cancer cells[J]. Analytical and Bioanalytical
blue in Fenton-like system[J]. Journal Colloid and Interface Science,
Chemistry, 2021, 413: 4451-4458.
2019, 556: 466-475. [19] WAN Y, QI P, ZHANG D, et al. Manganese oxide nanowire-
[2] LIU X H, LU S Y, GUO W, et al. MnO 2 aerogels for highly efficient mediated enzyme-linked immunosorbent assay[J]. Biosens Bioelectron,
oxidative degradation of Rhodamine B[J]. RSC Advances, 2017, 2012, 33 (1): 69-74.
7(48): 30283-30288. [20] ZHENG Y N, XU D P, SUN L X, et al. Construction of a bioinspired
[3] XU Y L, REN B, WANG R, et al. Facile preparation of rod-like MnO Fe 3O 4/N-HCS nanozyme for highly sensitive detection of GSH[J].
nanomixtures via hydrothermal approach and highly efficient removal of Colloids and Surfaces A: Physicochemical and Engineering Aspects,
methylene blue for wastewater treatment[J]. Nanomaterials, 2019, 2022, 648: 129046.
9(1): 1-16. [21] TANG M L, ZHANG Z C, SUN T D, et al. Manganese-based
[4] SABNA V, THAMPI S G, CHANDRAKARAN S. Degradation of nanozymes: Preparation, catalytic mechanisms, and biomedical
Rhodamine B with manganese dioxide nanorods[J]. Journal of Water applications[J]. Advanced Healthcare Materials, 2022, 11(21): 2201733.
and Health, 2018, 16(5/6): 846-856. [22] YANG R J, FAN Y Y, YE R Q, et al. MnO 2-based materials for
[5] SELLAOUI L, GOMEZ-AVILES A, DHAOUADI, et al. Adsorption environmental applications[J]. Advanced Materials, 2021, 33(9):
of emerging pollutants on lignin-based activated carbon: Analysis of 2004862.
adsorption mechanism via characterization, kinetics and equilibrium [23] GAO J J, JIA C M, ZHANG L P, et al. Tuning chemical bonding of
studies[J]. Chemical Engineering Journal, 2023, 452: 139399. MnO 2 through transition-metal doping for enhanced CO oxidation[J].
[6] LIU X, HUANG Y, ZHAO P Q, et al. Precise Cu localization- Journal of Catalysis, 2016, 341: 82-90.
[24] YANG Y Y, ZHANG P P, HU K S, et al. Sustainable redox processes
dependent catalytic degradation of organic pollutants in water[J].
induced by peroxymonosulfate and metal doping on amorphous
ChemCatChem, 2019, 12(1): 175-180.
manganese dioxide for nonradical degradation of water contaminants[J].
[7] GAN J S, MUHAMMAD B L, LI X B, et al. Peroxidases-based
Applied Catalysis B: Environmental, 2021, 286: 119903.
enticing biotechnological platforms for biodegradation and
[25] HUANG Y L, TIAN X K, NIE Y L, et al. Enhanced peroxymonosulfate
biotransformation of emerging contaminants[J]. Chemosphere, 2022,
activation for phenol degradation over MnO 2 at pH 3.5~9.0 via
307: 136035.
Cu(Ⅱ) substitution[J]. Journal of Hazardous Materials, 2018, 360:
[8] ZHANG Y T, LIU C, XU B B, et al. Degradation of benzotriazole by
303-310.
a novel Fenton-like reaction with mesoporous Cu/MnO 2: Combination of
[26] CHIAM S, PUNG S, YEOH F Y, et al. Highly efficient oxidative
adsorption and catalysis oxidation[J]. Applied Catalysis B:
degradation of organic dyes by manganese dioxide nanoflowers[J].
Environmental, 2016, 199: 447-457.
Materials Chemistry and Physics, 2022, 280: 125848.
[9] BI X R, HUANG Y, LIU X, et al. Oxidative degradation of aqueous [27] HASTUTI E, SUBHAN A, AMONPATTARATKIT P, et al.
organic contaminants over shape-tunable MnO 2 nanomaterials via Oxidation state, local structure distortion, and defect structure
peroxymonosulfate activation[J]. Separation and Purification Technology, analysis of Cu doped alpha-MnO 2 correlated to conductivity and
2021, 275: 119141. dielectric properties[J]. Heliyon, 2022, 8(11): 11459.
[10] RAMAKRISHNA D, RAJKUMAR B, MADHUSUDHAN A, et al. [28] JIANG G H (蒋光辉), CHEN H Q (陈海清). Preparation of α-MnO 2
Effective fabrication of cellulose nanofibrils supported Pd nanoparticles by liquid phase co-precipitation[J]. Hunan Nonferrous
nanoparticles as a novel nanozyme with peroxidase and oxidase-like Metals (湖南有色金属), 2018, 34(4): 49-53.
activities for efficient dye degradation[J]. Journal of Hazardous [29] SONG H, WANG Y H, WANG G Q, et al. Ultrathin two-dimensional
Materials, 2022, 436: 129165. MnO 2 nanosheet as a stable coreactant of 3,3′,5,5′-tetramethylbenzidine
[11] LEONTIE A R, RDUCAN A, CULI D C, et al. Laccase immobilized chromogenic substrate for visual and colorimetric detection of
on chitosan-polyacrylic acid microspheres as highly efficient iron(Ⅱ) ion[J]. Microchimica Acta, 2017, 184(9): 3399-3404.
biocatalyst for naphthol green B and indigo carmine degradation[J]. [30] EL-NAGGAR M E, ABDEL-ATY A M, WASSEL A R, et al.
Chemical Engineering Journal, 2022, 439: 135654. Immobilization of horseradish peroxidase on cationic microporous
[12] ZHANG J C, BAI Q, BI X L, et al. Piezoelectric enhanced starch: Physico-bio-chemical characterization and removal of phenolic
peroxidase-like activity of metal-free sulfur doped graphdiyne compounds[J]. International Journal of Biological Macromolecules,
nanosheets for efficient water pollutant degradation and bacterial 2021, 181: 734-742.
[31] MENG Y X, ZHAO K F, ZHANG Z K, et al. Effects of crystal
disinfection[J]. Nano Today, 2022, 43: 101429.
structure on the activity of MnO 2 nanorods oxidase mimics[J]. Nano
[13] HUANG Y Y, REN J S, QU X G. Nanozymes: Classification,
Research, 2020, 13(3): 709-718.
catalytic mechanisms, activity regulation, and applications[J].
[32] XING Y Y, CHEN M L, ZHAO Y Q, et al. Triple-enzyme mimetic
Chemical Reviews, 2019, 119(6): 4357-4412.
activity of Fe 3O 4@C@MnO 2 composites derived from metal-organic
[14] GUAN H N (关桦楠), XUE Y (薛悦), PENG B (彭勃), et al. Rapid
frameworks and their application to colorimetric biosensing of
removal of organic pollutants from water using Fenton reaction
dopamine[J]. Microchimica Acta, 2022, 189: 12.
nanometrics[J]. Fine Chemicals (精细化工), 2020, 37(9): 1738-1743.
[33] LIU Y, NIU M S, YI X L, et al. Boron vacancies of mesoporous
[15] SHEN X M, LIU W Q, GAO X J, et al. Mechanisms of oxidase and 3+
MnO 2 with strong acid sites, free Mn species and macropore
superoxide dismutation-like activities of gold, silver, platinum, and
decoration for efficiently decontaminating organic and heavy metal
palladium, and their alloys: A general way to the activation of
pollutants in black-odorous waterbodies[J]. Applied Surface Science,
molecular oxygen[J]. Journal of the American Chemical Society,
2021, 561: 150081.
2015, 137(50): 15882-15891. [34] BHOWMICK S, MOI C T, KALITA N, et al. Spontaneous
[16] LIU Q W, ZHANG A, WANG R H, et al. A review on metal- and Fenton-like dye degradation in clustered-petal di-manganese copper
metal oxide-based nanozymes: Properties, mechanisms, and applications[J]. oxide by virtue of self-cyclic redox couple[J]. Journal of Environmental
Nano-Micro Letters, 2021, 13(1): 147-199. Chemical Engineering, 2021, 9(5): 106094.
[17] ZHENG Y N (郑燕宁), JI J R (季军荣), LIANG X L (梁雪玲), et al. [35] WANG L (王磊), CHENG X X (成先雄), LIAN J F (连军锋), et al.
Study on the properties of nitrogen-doped hollow carbon ball Degradation of azo dye by catalyzed persulfate with spinel c-CuFe 2O 4[J].
oxides[J]. Journal of Inorganic Materials (无机材料学报), 2021, Fine Chemicals (精细化工), 2021, 38(10): 2117-2124.