Page 22 - 《精细化工》2023年第12期
P. 22
·2564· 精细化工 FINE CHEMICALS 第 40 卷
sulfuric acid media using a polymer inclusion membrane containing peels: Kinetics, equlibrium and batch studies[J]. Journal of
alamine336[J]. Chemical Papers, 2020, 74(8): 2573-2581. Radioanalytical and Nuclear Chemistry, 2019, 319(1): 425-435.
[9] XIE Y, CHEN C L, REN X M, et al. Emerging natural and tailored [28] ZHANG X F (张晓峰), CHEN D Y (陈迪云), PENG Y (彭燕), et al.
materials for uranium-contaminated water treatment and environmental Absorption of uranium with tea oil tree sawdust modified by succinic
remediation[J]. Progress in Materials Science, 2019, 103: 180-234. acid[J]. Environmental Science (环境科学), 2015, 36(5): 1686-1693.
[10] YANG J H, LI C S, YANG B, et al. Study on adsorption of [29] JIN J, LI S W, PENG X Q, et al. HNO 3 modified biochars for
chromium(Ⅵ) by activated carbon from cassava sludge[J]. IOP uranium(Ⅵ) removal from aqueous solution[J]. Bioresource Technology,
Conference Series: Earth and Environmental Science, 2018, 128: 012017. 2018, 256: 247-253.
[11] MO J H, YANG Q, ZHANG N, et al. A review on agro-industrial [30] ZHANG M, GAO B, VARNOOSFADERANI S, et al. Preparation
waste (AIW) derived adsorbents for water and wastewater treatment[J]. and characterization of a novel magnetic biochar for arsenic
Journal of Environmental Management, 2018, 227: 395-405. removal[J]. Bioresource technology, 2013, 130: 457-462.
[12] CONG H B (丛宏斌), ZHAO L X (赵立欣), MENG H B (孟海波), [31] SUN Y F (孙运飞), LI W W (李文文), WANG Y N (汪燕南), et al.
et al. High-efficiency recycling mode of agroforest wastes and its Study on the preparation of magnetic biochar and its adsorbing
benefit analysis[J]. Chinese Society of Agricultural Engineering (农 capacity[J]. Industrial Water Treatment (工业水处理), 2016, 36(3):
业工程学报), 2019, 35(10): 199-204. 54-58.
[13] SUN Y F, QI S Y, ZHENG F P, et al. Organics removal, nitrogen [32] YANG A L, YANG S Y, ZHU Y K. Magnetic modification of used
removal and N 2O emission in subsurface wastewater infiltration tea leaves for uranium adsorption[J]. New Carbon Materials, 2021,
systems amended with/without biochar and sludge[J]. Bioresource 36(4): 821-826.
Technology, 2018, 249: 57-61. [33] WANG S J, GUO W, GAO F, et al. Lead and uranium sorptive
[14] LI B (李彬), ZHANG B H (张宝华), NING P (宁平), et al. Present removal from aqueous solution using magnetic and nonmagnetic fast
status and prospect of red mud resource utilization and safety pyrolysis rice husk biochars[J]. RSC Advances, 2018, 8(24): 13205-
treatment[J]. Chemical Industry and Engineering Progress (化工进 13217.
展), 2018, 37(2): 714-723. [34] LI M X, LIU H B, CHEN T H, et al. Synthesis of magnetic biochar
[15] WANG J X (王建新), LI J (李晶), ZHAO S B (赵仕宝), et al. composites for enhanced uranium(Ⅵ) adsorption[J]. Science of the
Research progress and prospect of resource utilization of fly ash in Total Environment, 2019, 651: 1020-1028.
China[J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报), [35] YANG J Y (杨竞莹), SHI W S (施万胜), HUANG Z X (黄振兴), et al.
2018, 37(12): 3833-3841. Research progress on the preparation of modified nano zero-valent
[16] YANG Y, GAO R, YUE H F, et al. Polycyclic aromatic hydrocarbon ironmaterials[J]. Chemical Industry and Engineering Progress (化工
(PAH)-containing soils from coal gangue stacking areas contribute to 进展), 2022, 42: 1-13.
epithelial to mesenchymal transition (EMT) modulation on cancer [36] PANG H W, ZHANG E Y, ZHANG D, et al. Precursor impact and
cell metastasis[J]. Science of the Total Environment, 2017, 580: mechanism analysis of uranium elimination by biochar supported
632-640. sulfurized nanoscale zero-valent iron[J]. Journal of Environmental
[17] HE H P (何惠平), YUAN W X (袁伟霞). Suggestions to promote the Chemical Engineering, 2022, 10(2): 107288.
resourceful and comprehensive utilization of steel slag[N/OL]. China [37] LIU Q (刘清), XU Y W (许艺文), ZHAO G D (招国栋), et al.
Metallurgical News (中国冶金报), 2022-03-12 (006). Biochar supported green nano-iron particles to remove U(Ⅵ) from
[18] YANG L Y (杨丽韫), CHEN J (陈军), YUAN P (袁鹏), et al. water[J]. Acta Materiae Compositae Sinica (复合材料学报), 2022,
Research review of heavy metal ions removal from waste water by 39(12): 5934-5945.
steelmaking slag[J]. Iron and Steel (钢铁), 2017, 52(8): 1-9. [38] HU S Q (胡世琴), YANG B (杨斌), FAN J (范甲), et al. Adsorption
[19] WU Y D (吴跃东), PENG B (彭犇), WU L (吴龙), et al. Review on behavior of amino-functionalized tobacco leaf biochar on U(Ⅵ) in
global development of treatment and utilization of steel slag[J]. wastewater[J]. Fine Chemicals (精细化工), 2021, 38(12): 2566-2585.
Environmental Engineering (环境工程), 2021, 39(1): 161-165. [39] WANG S J (王淑娟), GUO W (郭伟), SHI J H (史江红), et al.
[20] YI L S (易龙生), MI H C (米宏成), WU Q (吴倩), et al. Research Adsorption kinetics of uranium(Ⅵ) from aqueous solution by amino
progress on removing pollutants from water by red mud[J]. The modified rice husk biochar[J]. Research of Environmental Sciences
Chinese Journal of Nonferrous Metals (中国有色金属学报), 2022, (环境科学研究), 2019, 32(2): 347-355.
32(1): 159-172. [40] TAN Y, LI L, ZHANG H, et al. Adsorption and recovery of U(Ⅵ)
[21] WANG L H, FU P F, MA Y H, et al. Steel slag as a cost-effective from actual acid radioactive wastewater with low uranium
adsorbent for synergic removal of collectors, Cu(Ⅱ) and Pb(Ⅱ) ions concentration using thioacetamide modified activated carbon from
from flotation wastewaters[J]. Minerals Engineering, 2022, 183: liquorice residue[J]. Journal of Radioanalytical and Nuclear Chemistry,
107593. 2018, 317(2): 811-824.
[22] QUAN C (全翠), ZHANG G T (张广涛), XU Y (许毓), et al. Recent [41] FANG C L, TAO Q Q, DAI Y, et al. Amidoximated orange peel as a
advances on the speciation distribution of heavy metals in sludge specific uranium scavenger[J]. Journal of Radioanalytical and
pyrolysis residue[J]. CIESC Journal (化工学报), 2022, 73(1): 134-143. Nuclear Chemistry, 2020, 326(3): 1831-1841.
[23] DAI X H (戴晓虎), ZHANG C (张辰), ZHANG L W (章林伟), et al. [42] DAI Y, PENG H, FAN J L, et al. Removal of uranium using
Thoughts on the development direction of sludge treatment and MnO 2/orange peel biochar composite prepared by activation and
resource recovery under the background of carbon neutrality[J]. Water in-situ deposit in a single step[J]. Biomass and Bioenergy, 2020, 142:
& Wastewater Engineering (给水排水), 2021, 57(3): 1-5. 105772.
[24] ZHANG Y X (张云秀), CAO M H (曹明慧), ZHENG S D (郑少笛), [43] LIU J X, GE Y J, WANG G H, et al. Highly efficient removal of
et al. Recent advances in uranium adsorption by biomass based U(Ⅵ) in aqueous solutions by tea waste-derived biochar-supported
composite[J]. Acta Materiae Compositae Sinica (复合材料学报), iron-manganese oxide composite[J]. Journal of Radioanalytical and
2022, 39(1): 111-125. Nuclear Chemistry, 2021, 330(3): 871-882.
[25] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a [44] WU W Y, CHEN D Y, LI J W, et al. Enhanced adsorption of uranium
sorbent for contaminant management in soil and water: A review[J]. by modified red muds: Adsorption behavior study[J]. Environmental
Chemosphere, 2014, 99: 19-33. Science and Pollution Research, 2018, 25(18): 18096-18108.
[26] WU M S (吴明山), MA J F (马建锋), YANG S M (杨淑敏), et al. [45] CHEN Q, WANG H Q, HU E M, et al. Efficient adsorption of
Research progress of magnetic biochar composites[J]. Journal of uranium(Ⅵ) from aqueous solution by a novel modified steel slag
Functional Materials (功能材料), 2016, 47(7): 7028-7033. adsorbent[J]. Journal of Radioanalytical and Nuclear Chemistry,
[27] ŠABANOVIĆ E, MUHIC-ŠARAC T, NUHANOVIC M, et al. 2020, 323(1): 73-81.
Biosorption of uranium(Ⅵ) from aqueous solution by citrus limon (下转第 2576 页)