Page 148 - 《精细化工》2023年第2期
P. 148
·370· 精细化工 FINE CHEMICALS 第 40 卷
Pd-Co 复合催化剂具有更低的活性衰减比例 [26-27] 。 Energy, 2020, 45(56): 32022-32038.
[11] ALCAIDE F, ÁLVAREZ G, CABOT P L, et al. Supporting PtRh
这可以用双功能机理来解释:Co 氧化物/水合氧化 alloy nanoparticle catalysts by electrodeposition on carbon paper for
物在较高电位下可以提供—OH 基团,使 Pd 表面积 the ethanol electrooxidation in acidic medium[J]. Journal of
Electroanalytical Chemistry, 2020, 861: 113960.
累的中间产物快速氧化,催化活性位得以恢复,从 [12] HE N, GONG Y F, YANG Y D, et al. An effective Pd@Ni-B/C anode
而增强 Pd 催化剂的抗中毒能力 [28] 。 catalyst for electro-oxidation of formic acid[J]. International Journal
of Hydrogen Energy, 2018, 43(6): 3216-3222.
[13] ZHAO X, DAI P, XU D Y, et al. Ultrafine PdAg alloy nanoparticles
3 结论 anchored on NH 2-functionalized 2D/2D TiO 2 nanosheet/rGO composite
as efficient and reusable catalyst for hydrogen release from
采用分步乙二醇还原法制备了 Pd-Co 复合催化 additive-free formic acid at room temperature[J]. Journal of Energy
Chemistry, 2021, 59: 455-464.
剂 Pd-Co/CNT,将其用于甲醇电氧化反应。结果表 [14] DING L X, WANG A L, OU Y N, et al. Hierarchical Pd-Sn alloy
明,Co 的引入促进了 Pd 纳米粒子的分散,Pd-Co nanosheet dendrites: An economical and highly active catalyst for
2
催化剂的 ECSA 可达 39.7 m /g,当 Pd∶Co 物质的 ethanol electrooxidation[J]. Scientific Reports, 2013, 3: 1181.
[15] SATYANARAYANA M, RAJESHKHANNA G, SAHOO M K, et al.
量比为 1∶0.2 时,Pd-Co/CNT 的甲醇氧化峰电流密 Electrocatalytic activity of Pd 20–xAg x nanoparticles embedded in
度约为 Pd/CNT 的 2.7 倍。这归因于 Pd 和 Co 之间 carbon nanotubes for methanol oxidation in alkaline media[J]. ACS
Applied Energy Materials, 2018, 1(8): 3763-3770.
的协同相互作用。Co 引入后,催化剂的活性衰减比 [16] KUMAR V S, KUMMARI S, GOUD K Y, et al. One-pot synthesis of
例由 Pd/CNT 的 63.8%降至 Pd-Co/CNT(1∶0.2)的 Pd 20–xAu x nanoparticles embedded in nitrogen doped graphene as
high-performance electrocatalyst toward methanol oxidation[J].
54.2%,表明其抗中毒性能得到了显著改善。当 Pd International Journal of Hydrogen Energy, 2020, 45(1): 1018-1029.
与 Co 的物质的量比为 1∶0.2 时,Pd-Co 催化剂表 [17] CHEN S, LI M, GAO M, et al. High-performance Pt-Co nanoframes
for fuel-cell electrocatalysis[J]. Nano Letters, 2020, 20(3):
现出最佳的催化性能,表明适量 Co 的存在有助于 1974-1979.
改善 Pd/CNT 催化剂的甲醇电氧化性能。本研究揭 [18] RAHUL R, SINGH R K, NEERGAT M. Effect of oxidative
heat-treatment on electrochemical properties and oxygen reduction
示了过渡金属的存在形式对其催化性能的影响,这 reaction (ORR) activity of Pd-Co alloy catalysts[J]. Journal of
对于电催化剂的性能改进具有重要意义。 Electroanalytical Chemistry, 2014, 712: 223-229
[19] KWON T, JUN M, JOO J, et al. Nanoscale hetero-interfaces between
metals and metal compounds for electrocatalytic applications[J].
参考文献:
Journal of Materials Chemistry A, 2019, 7(10): 5090-5110.
[1] BAGOTSKY V S. Fuel cells: Problems and solutions[M]. SUN G Q [20] WEBER D J, DOSCHE C, OEZASLAN M. Tuning of Pt-Co
(孙公权), WANG S L (王素力), JIANG L H (姜鲁华), Translate. nanoparticle motifs for enhancing the HOR performance in alkaline
Beijing: Posts & Telecom Press (人民邮电出版社), 2011. media[J]. Journal of Materials Chemistry A, 2021, 9(27): 15415-
[2] CHELAGHMIA M L, NACEF M, FISLI H, et al. Electrocatalytic 15431.
performance of Pt-Ni nanoparticles supported on an activated [21] KIM J, CHOI H, KIM D, et al. Operando surface studies on
graphite electrode for ethanol and 2-propanol oxidation[J]. RSC metal-oxide interfaces of bimetal and mixed catalysts[J]. ACS
Advances, 2020, 10(61): 36941-36948. Catalysis, 2021, 11(14): 8645-8677.
[3] CHEN A, OSTROM C. Palladium-based nanomaterials: Synthesis [22] ŁUKASZEWSKI M, SOSZKO M, CZERWIŃSKI A. Electrochemical
and electrochemical applications[J]. Chemical Reviews, 2015, methods of real surface area determination of noble metal electrodes
115(21): 11999-12044. —An overview[J]. International Journal of Electrochemical Science,
[4] LI B Q, FAN H S, CHENG M, et al. Porous Pt-NiO x nanostructures 2016, 11(6): 4442-4469.
with ultrasmall building blocks and enhanced electrocatalytic activity [23] CHEN W M, ZHU Z Y, AL-KHAWLANI A, et al. A Pd nanocatalyst
for the ethanol oxidation reaction[J]. RSC Advances, 2018, 8(2): supported on a polymer-modified hybrid carbon material for
698-705. methanol oxidation[J]. Journal of Applied Electrochemistry, 2020,
[5] PONGPICHAYAKUL N, WAENKEAW P, JAKMUNEE J, et al. 50: 1059-1067.
Activity and stability improvement of platinum loaded on reduced [24] WANG L, WANG Y, LI A, et al. Electrocatalysis of carbon black-or
graphene oxide and carbon nanotube composites for methanol poly (diallyldimethylammonium chloride)-functionalized activated
oxidation[J]. Journal of Applied Electrochemistry, 2020, 50(1): 51-62. carbon nanotubes-supported Pd-Tb towards methanol oxidation in
[6] TONG Y Y, YAN X, LIANG J, et al. Metal-based electrocatalysts for alkaline media[J]. Journal of Power Sources, 2014, 257: 138-146.
methanol electro-oxidation: Progress, opportunities, and challenges[J]. [25] ZHOU W Q, DU Y K, REN F F, et al. High efficient electrocatalytic
Small, 2021, 17(9): 1904126. oxidation of methanol on Pt/polyindoles composite catalysts[J].
[7] XIE J, ZHANG Q H, GU L, et al. Ruthenium-platinum core-shell International Journal of Hydrogen Energy, 2010, 35(8): 3270-3279.
nanocatalysts with substantially enhanced activity and durability [26] KEPENIENĖ V, TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ L,
towards methanol oxidation[J]. Nano Energy, 2016, 21: 247-257. JABLONSKIENĖ J, et al. One-pot synthesis of graphene supported
[8] LI S J, ZHOU Y T, KANG X, et al. A simple and effective principle platinum-cobalt nanoparticles as electrocatalysts for methanol
for a rational design of heterogeneous catalysts for dehydrogenation oxidation[J]. Materials Chemistry and Physics, 2016, 171: 145-152.
of formic acid[J]. Advanced Materials, 2019, 31(15):1806781. [27] TALEBI A, OMRANI A, ROSTAMI H, et al. Modification of
[9] WALA M, SIMKA W. Effect of anode material on electrochemical commercial Pt/C catalyst by cobalt for enhanced electro-oxidation of
oxidation of low molecular weight alcohols—A review[J]. ethanol[J]. Inorganic and Nano-Metal Chemistry, 2021:1980035.
Molecules, 2021, 26(8): 2144. [28] LINARES J J, ROCHA T A, ZIGNANI S, et al. Different anode
[10] YE N, BAI Y X, JIANG Z, et al. Component-dependent activity of catalyst for high temperature polybenzimidazole-based direct ethanol
bimetallic PdCu and PdNi electrocatalysts for methanol oxidation fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(1):
reaction in alkaline media[J]. International Journal of Hydrogen 620-630.