Page 148 - 《精细化工》2023年第2期
P. 148

·370·                             精细化工   FINE CHEMICALS                                 第 40 卷

            Pd-Co 复合催化剂具有更低的活性衰减比例                  [26-27] 。      Energy, 2020, 45(56): 32022-32038.
                                                               [11]  ALCAIDE F, ÁLVAREZ  G, CABOT P L,  et al. Supporting PtRh
            这可以用双功能机理来解释:Co 氧化物/水合氧化                               alloy nanoparticle catalysts by electrodeposition on carbon paper for
            物在较高电位下可以提供—OH 基团,使 Pd 表面积                             the ethanol electrooxidation in acidic medium[J]. Journal of
                                                                   Electroanalytical Chemistry, 2020, 861: 113960.
            累的中间产物快速氧化,催化活性位得以恢复,从                             [12]  HE N, GONG Y F, YANG Y D, et al. An effective Pd@Ni-B/C anode
            而增强 Pd 催化剂的抗中毒能力            [28] 。                     catalyst for electro-oxidation of formic acid[J]. International Journal
                                                                   of Hydrogen Energy, 2018, 43(6): 3216-3222.
                                                               [13]  ZHAO X, DAI P, XU D Y, et al. Ultrafine PdAg alloy nanoparticles
            3   结论                                                 anchored on NH 2-functionalized 2D/2D TiO 2 nanosheet/rGO composite
                                                                   as efficient and  reusable catalyst for  hydrogen release from
                 采用分步乙二醇还原法制备了 Pd-Co 复合催化                          additive-free formic acid at room temperature[J]. Journal of Energy
                                                                   Chemistry, 2021, 59: 455-464.
            剂 Pd-Co/CNT,将其用于甲醇电氧化反应。结果表                        [14]  DING L  X, WANG A L,  OU Y N,  et al. Hierarchical Pd-Sn alloy
            明,Co 的引入促进了 Pd 纳米粒子的分散,Pd-Co                           nanosheet dendrites: An economical  and highly active catalyst for
                                      2
            催化剂的 ECSA 可达 39.7 m /g,当 Pd∶Co 物质的                     ethanol electrooxidation[J]. Scientific Reports, 2013, 3: 1181.
                                                               [15]  SATYANARAYANA M, RAJESHKHANNA G, SAHOO M K, et al.
            量比为 1∶0.2 时,Pd-Co/CNT 的甲醇氧化峰电流密                        Electrocatalytic activity of Pd 20–xAg x nanoparticles embedded in
            度约为 Pd/CNT 的 2.7 倍。这归因于 Pd 和 Co 之间                     carbon nanotubes for methanol oxidation in alkaline media[J]. ACS
                                                                   Applied Energy Materials, 2018, 1(8): 3763-3770.
            的协同相互作用。Co 引入后,催化剂的活性衰减比                           [16]  KUMAR V S, KUMMARI S, GOUD K Y, et al. One-pot synthesis of
            例由 Pd/CNT 的 63.8%降至 Pd-Co/CNT(1∶0.2)的                  Pd 20–xAu x nanoparticles embedded in nitrogen  doped graphene as
                                                                   high-performance  electrocatalyst toward methanol oxidation[J].
            54.2%,表明其抗中毒性能得到了显著改善。当 Pd                             International Journal of Hydrogen Energy, 2020, 45(1): 1018-1029.
            与 Co 的物质的量比为 1∶0.2 时,Pd-Co 催化剂表                    [17]  CHEN S, LI M, GAO M, et al. High-performance Pt-Co nanoframes
                                                                   for fuel-cell electrocatalysis[J]. Nano Letters, 2020, 20(3):
            现出最佳的催化性能,表明适量 Co 的存在有助于                               1974-1979.
            改善 Pd/CNT 催化剂的甲醇电氧化性能。本研究揭                         [18]  RAHUL R, SINGH R K, NEERGAT M.  Effect of oxidative
                                                                   heat-treatment on electrochemical properties and oxygen reduction
            示了过渡金属的存在形式对其催化性能的影响,这                                 reaction (ORR) activity of Pd-Co alloy catalysts[J]. Journal  of
            对于电催化剂的性能改进具有重要意义。                                     Electroanalytical Chemistry, 2014, 712: 223-229
                                                               [19]  KWON T, JUN M, JOO J, et al. Nanoscale hetero-interfaces between
                                                                   metals and  metal  compounds for electrocatalytic applications[J].
            参考文献:
                                                                   Journal of Materials Chemistry A, 2019, 7(10): 5090-5110.
            [1]   BAGOTSKY V S. Fuel cells: Problems and solutions[M]. SUN G Q   [20]  WEBER D J, DOSCHE C, OEZASLAN M. Tuning of Pt-Co
                 (孙公权), WANG  S L (王素力), JIANG  L H (姜鲁华), Translate.   nanoparticle motifs for enhancing the HOR performance in alkaline
                 Beijing: Posts & Telecom Press (人民邮电出版社), 2011.     media[J]. Journal of Materials Chemistry A, 2021, 9(27): 15415-
            [2]   CHELAGHMIA M L, NACEF M, FISLI H,  et al. Electrocatalytic   15431.
                 performance of Pt-Ni nanoparticles  supported  on an  activated   [21]  KIM J, CHOI H, KIM D,  et al. Operando surface  studies on
                 graphite electrode for ethanol and 2-propanol oxidation[J]. RSC   metal-oxide interfaces of bimetal and mixed catalysts[J]. ACS
                 Advances, 2020, 10(61): 36941-36948.              Catalysis, 2021, 11(14): 8645-8677.
            [3]   CHEN A,  OSTROM C. Palladium-based nanomaterials: Synthesis   [22]  ŁUKASZEWSKI M, SOSZKO M, CZERWIŃSKI A. Electrochemical
                 and electrochemical applications[J]. Chemical  Reviews, 2015,   methods of real surface area determination of noble metal electrodes
                 115(21): 11999-12044.                             —An overview[J]. International Journal of Electrochemical Science,
            [4]   LI B Q, FAN H S, CHENG M, et al. Porous Pt-NiO x nanostructures   2016, 11(6): 4442-4469.
                 with ultrasmall building blocks and enhanced electrocatalytic activity   [23]  CHEN W M, ZHU Z Y, AL-KHAWLANI A, et al. A Pd nanocatalyst
                 for the ethanol oxidation reaction[J]. RSC Advances, 2018, 8(2):   supported on a polymer-modified  hybrid carbon material for
                 698-705.                                          methanol oxidation[J]. Journal of Applied Electrochemistry, 2020,
            [5]   PONGPICHAYAKUL N, WAENKEAW P, JAKMUNEE J,  et al.   50: 1059-1067.
                 Activity and stability improvement of platinum loaded on reduced   [24]  WANG L, WANG Y, LI A, et al. Electrocatalysis of carbon black-or
                 graphene  oxide and carbon  nanotube composites for methanol   poly (diallyldimethylammonium  chloride)-functionalized activated
                 oxidation[J]. Journal of Applied Electrochemistry, 2020, 50(1): 51-62.   carbon  nanotubes-supported Pd-Tb towards methanol oxidation in
            [6]   TONG Y Y, YAN X, LIANG J, et al. Metal-based electrocatalysts for   alkaline media[J]. Journal of Power Sources, 2014, 257: 138-146.
                 methanol electro-oxidation: Progress, opportunities, and challenges[J].   [25]  ZHOU W Q, DU Y K, REN F F, et al. High efficient electrocatalytic
                 Small, 2021, 17(9): 1904126.                      oxidation of methanol on Pt/polyindoles composite catalysts[J].
            [7]   XIE J, ZHANG Q  H, GU  L, et al. Ruthenium-platinum core-shell   International Journal of Hydrogen Energy, 2010, 35(8): 3270-3279.
                 nanocatalysts with substantially enhanced activity and durability   [26] KEPENIENĖ  V,  TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ  L,
                 towards methanol oxidation[J]. Nano Energy, 2016, 21: 247-257.   JABLONSKIENĖ J, et al. One-pot synthesis of graphene supported
            [8]   LI S J, ZHOU Y T, KANG X, et al. A simple and effective principle   platinum-cobalt nanoparticles as electrocatalysts for  methanol
                 for a rational design of heterogeneous catalysts for dehydrogenation   oxidation[J]. Materials Chemistry and Physics, 2016, 171: 145-152.
                 of formic acid[J]. Advanced Materials, 2019, 31(15):1806781.   [27]  TALEBI A,  OMRANI A,  ROSTAMI  H,  et al. Modification of
            [9]   WALA M, SIMKA W. Effect of anode material on electrochemical   commercial Pt/C catalyst by cobalt for enhanced electro-oxidation of
                 oxidation of low molecular weight alcohols—A review[J].   ethanol[J]. Inorganic and Nano-Metal Chemistry, 2021:1980035.
                 Molecules, 2021, 26(8): 2144.                 [28]  LINARES J J,  ROCHA  T  A, ZIGNANI S,  et al. Different anode
            [10]  YE N, BAI Y X, JIANG Z, et al. Component-dependent activity of   catalyst for high temperature polybenzimidazole-based direct ethanol
                 bimetallic PdCu and PdNi electrocatalysts for methanol oxidation   fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(1):
                 reaction in alkaline media[J]. International Journal of Hydrogen     620-630.
   143   144   145   146   147   148   149   150   151   152   153