Page 216 - 《精细化工》2023年第3期
P. 216
·672· 精细化工 FINE CHEMICALS 第 40 卷
blends: Manufacturability, miscibility and properties[J]. Materials, by the grafted copolymer[J]. Journal of Polymers and the Environment,
2020, 13(21): 1-17. 2012, 20(3): 810-816.
[14] SHI J H (史军华), YAO J (姚进), LI Z H (李知函), et al. Preparation [24] LIU F (刘斐), FU C X (傅楚娴), ZHAO L (赵龙), et al. Influence of
and performance of modified cellulose nanocrystal/poly(lactic acid) isothermal cold crystallization on impact toughness and heat
composite materials[J]. Fine Chemicals (精细化工), 2020, 37(1): resistance of PLA/PBAT blends[J]. Plastics Science and Technology
45-50, 79. (塑料科技), 2019, 47(11): 59-64.
[15] LIN Q (林强), DING Z (丁正), WANG Y X (王迎雪), et al. Structure [25] LIU G J (刘广军). Research progress on poly lactic acid (PLA)
and properties of PLA/PBAT composite[J]. Plastics (塑料), 2016, crystallization factors[J]. Guangzhou Chemical Industry (广州化工),
45(3): 65-67. 2016, 44(3): 28-31.
[16] ZONG J D (宗敬东). Study on compatibilization of PBAT/PLA [26] WU D D, GUO Y, HUANG A P, et al. Effect of the multi-functional
blends[J]. Guangdong Chemical Industry (广东化工), 2020, 47(19): epoxides on the thermal, mechanical and rheological properties of
63-66. poly(butylene adipate-co-terephthalate)/polylactide blends[J]. Polymer
[17] ZHANG Y F (张云飞), HUANG A P (黄安平), ZHANG W X (张文 Bulletin, 2021, 78(10): 5567-5591.
学), et al. Research progress of PLA/PBAT composites[J]. Engineering [27] CHEN X Y (陈小英), XU N (徐鼐), PANG S J (庞素娟), et al.
Plastics Application (工程塑料应用), 2019, 47(1): 154-158. Preparation and property of PLA-reinforced PBAT blend[J]. New
[18] LI G Y (李盖禹), XU G Z (许国志), JI J H (季君晖), et al. Study on Chemical Materials (化工新型材料), 2016, 44(6): 122-125.
compatibility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) [28] YU Z Y (俞张勇), YANG Z K (杨兆昆), SHI D J (施冬健), et al. Non-
blends[J]. China Plastic (中国塑料), 2017, 31(4): 51-56. isothermal crystallization kinetics of PLA/lignin based composite[J].
[19] KUMAR M, MOHANTY S, NAYAK S K, et al. Effect of glycidyl Plastics (塑料), 2021, 50(5): 103-107, 118.
methacrylate (GMA) on the thermal, mechanical and morphological [29] SHI H, CHEN X, CHEN W K, et al. Crystallization behavior, heat
property of biodegradable PLA/PBAT blend and its nanocomposites resistance, and mechanical performances of PLLA/myo-inositol
[J]. Bioresource Technology, 2010, 101(21): 8406-8415. blends[J]. Journal of Applied Polymer ence, 2017, 134(16): 44732.
[20] ZHANG Q (张倩), CHI W H (迟卫瀚), ZHANG Y (张雨), et al. [30] MAO P L (毛佩林). Crystallization kinetics of PLA/talc composites
Preparation and properties of high-performance eco-friendly PLA/ [J]. China Rubber/Plastics Technology and Equipment (橡塑技术与
PPC/PLA-g-GMA composites[J]. Plastics Science and Technology 装备), 2018, 44(24): 14-22.
(塑料科技), 2021, 49(11): 45-49. [31] HE S J (何世杰), CHEN X (陈欣), LI X L (李细林), et al.
[21] MENG X Y (孟祥宇), SONG L X (宋立新), SHI Y (史颖), et al. Non-isothermal crystallization kinetics of PA6 with different relative
Preparation of PLA-g-GMA and its influence on properties of PLA/ viscosity[J]. China Synthetic Fiber Industry (合成纤维工业),2021,
PPC blends[J]. China Plastics Industry (塑料工业), 2020, 48(3): 44(2): 12-17.
54-58. [32] ZHOU Z B (周志斌), LIU Y J (刘跃军), LIU X C (刘小超).
[22] XIE Z H (谢振华), CHU F X (储富祥), WANG C P (王春鹏), et al. Crystallization kinetics research on PLA/PBAT composites system
Preparation of poly(lactic acid) grafted with glycidyl methacrylate filled with modified nano-SiO 2[J]. Packaging Journal (包装学报),
through reactive extrusion and its compatibilization[J]. Polymer 2017, 9(3): 9-24.
Materials Science & Engineering (高分子材料科学与工程), 2015, [33] HUANG X L (黄秀龙), ZHANG H (张华), JI X (季欣), et al.
31(5): 125-128, 134. Influence of talc on nonisothermal crystallization behaviors of
[23] LIU J S, JIANG H H, CHEN L B. Grafting of glycidyl methacrylate PLA/PBAT blends[J]. Plastics Science and Technology (塑料科技),
onto poly(lactide) and properties of PLA/starch blends compatibilized 2018, 46(10): 45-50.
(上接第 637 页) catalyzed oxidation of four polyphenols[J]. Current Medical
Scinence, 2020, 40(2): 239-248.
[37] BRAUSCH J, RAND G. A review of personal care products in the [42] JIMENEZ A, MUNOZ J, MOLINA F, et al. Spectrophotometric
aquatic environment: Environmental concentrations and toxicity[J]. characterization of the action of tyrosinase on p-coumaric and caffeic
Chemosphere, 2011, 82(11): 1518-1532. acids: Characteristics of o-caffeoquinone[J]. Journal of Agricultural
[38] YIN Z H, LI Y F, GAN H X, et al. Synergistic effects and and Food Chemistry, 2017, 65(16): 3378-3386.
antityrosinase mechanism of four plant polyphenols from Morus and [43] FAN M, ZHANG G, HU X, et al. Quercetin as a tyrosinase inhibitor:
Hulless Barley[J]. Food Chemistry, 2022, 374: 131716. Inhibitory activity, conformational change and mechanism[J]. Food
[39] LYU P (吕平), PAN S Y (潘思轶). Synergistic antioxidant effect of Research International, 2017, 100(1): 226-233.
Tangerine peel and Pu'er tea total flavonoids[J]. Food Research and [44] YU Q, FAN L, DUAN A. Five individual polyphenols as tyrosinase
Development (食品研究与开发), 2020, 41(3): 59-64. inhibitors: Inhibitory activity, synergistic effect, action mechanism,
[40] LEE J H, LEE S J, PARK S, et al. Characterisation of flavonoids in and molecular docking[J]. Food Chemistry, 2019, 297: 124910.
Orostachys japonicus A. Berger using HPLC-MS/MS: Contribution [45] SHEN M L, LIU K, LIANG Y F, et al. Extraction optimization and
to the overall antioxidant effect[J]. Food Chemistry, 2011, 124(4): purification of anthocyanins from Lycium ruthenicum Murr. and
1627-1633. evaluation of tyrosinase inhibitory activity of the anthocyanins[J].
[41] LIU W, ZOU C, HU J, et al. Kinetic characterization of tyrosinase- Journal of Food Science, 2020, 85(3): 1750-3841.
(上接第 649 页) batteries[J]. Advanced Energy Materials, 2019, 9(9): 1803436.
[38] ZATOVSKY I. NASICON-type Na 3V 2(PO 4) 3[J]. Acta Crystallographica
[36] HU P, ZHU T, WANG X P, et al. Aqueous Zn//Zn(CF 3SO 3) 2// Section E, 2010, 66: I12-U194.
2+
+
Na 3V 2(PO 4) 3 batteries with simultaneous Zn /Na intercalation/de- [39] YE B Q, XU L, WU W B, et al. Encapsulation of 2D MoS 2
Intercalation[J]. Nano Energy, 2019, 58: 492-498. nanosheets into 1D carbon nanobelts as anodes with enhanced
[37] ZHU T, HU P, WANG X P, et al. Realizing three-electron redox lithium/sodium storage properties[J]. Journal of Materials Chemistry
reactions in NASICON-structured Na 3MnTi(PO 4) 3 for sodium-ion C, 2022, 10(9): 3329-3342.