Page 240 - 《精细化工》2023年第3期
P. 240
·696· 精细化工 FINE CHEMICALS 第 40 卷
ionic liquids: Specific promotion of the aerobic oxidation of alcohols chemoselective reduction of secondary amides[J]. Journal of the
[J]. ChemCatChem, 2016, 8(16): 2704-2709. American Chemical Society, 2010, 132(37): 12817-12819.
[15] WU F, ZHAO Y, WANG Y, et al. Hydrogen-bonding and acid [22] JIANG L Y, MING J J, WANG L Y, et al. Visible-light-induced selective
3
cooperative catalysis for benzylation of arenes with benzyl alcohols aerobic oxidation of sp C—H bonds catalyzed by a heterogeneous
over ionic liquids [J]. Green Chemistry, 2022, 24(8): 3137-3142. AgI/BiVO 4 catalyst[J]. Green Chemistry, 2022, 22(4): 1156-1163.
[16] WANG H, ZHAO Y, ZHANG F, et al. Hydrogen-bond donor and [23] OSULLIVAN P, ROZAS I. Understanding the guanidine-like
acceptor cooperative catalysis strategy for cyclic dehydration of diols cationic moiety for optimal binding into the DNA minor groove[J].
to access O-heterocycles[J]. Science Advances, 2021, 7(22): eabg0396. ChemMedChem, 2014, 9(9): 2065-2073.
[17] JIANG G F(姜国芳), ZHANG C (张灿), CHEN G Q(陈国庆), et al. [24] KUZMANICH G, SIMONCELLI S, GARD M N, et al. Excited state
Synthesis of 2-disubstituted benzothiazole compounds in deep eutectic kinetics in crystalline solids: Self-quenching in nanocrystals of 4,
solvents [J]. Fine Chemicals (精细化工), 2021, 38(1): 212- 216. 4′-disubstituted benzophenone triplets occurs by a reductive
[18] WU F, YAN F, WU L, et al. Reduction system "vitamin C/glycerol" quenching mechanism[J]. Journal of the American Chemical Society,
promoted copper(Ⅱ)-catalyzed N-arylation[J]. Applied Oranometallic 2011, 133(43): 17296-17306.
Chemistry, 2022, 36(3): e6618. [25] PI D, ZHOU H, ZHOU Y, et al. Cu-catalyzed reduction of azaarenes
[19] LI X, BAI F, LIU C, et al. Selective electrochemical oxygenation of and nitroaromatics with diboronic acid as reductant[J]. Tetrahedron,
alkylarenes to carbonyls[J]. Organic Letters, 2021, 23(19): 7445-7449. 2018, 74(17): 2121-2129.
[20] AZEEZ S, SURESHBABU P, SABIAN S, et al. Controlled reduction [26] ARAVINDA S, SHAMALA N, BANDYOPADHYAY A, et al.
of activated primary and secondary amides into aldehydes with Probing the role of the C−H···O hydrogen bond stabilized polypeptide
diisobutylaluminum hydride[J]. Organic & Biomolecular Chemistry, chain reversal at the C-terminus of designed peptide helices.
2022, 20(10): 2048-2053. Structural characterization of three decapeptides[J]. Journal of the
[21] PELLETIER G, BECHARA W S, CHARETTE A B. Controlled and American Chemical Society, 2003, 125(49): 15065-15075.
(上接第 564 页) 147000.
[100] XIAO J D, SHANG Q C, XIONG Y J, et al. Boosting photocatalytic
[96] GAO D D, LIU W J, XU Y, et al. Core-shell Ag@Ni cocatalyst on
the TiO 2 photocatalyst: One-step photoinduced deposition and its hydrogen production of a metal-organic framework decorated with
improved H 2-evolution activity[J]. Applied Catalysis B: Environmental, platinum nanoparticles: The platinum location matters[J]. Angewandte
2020, 260: 118190. Chemie International Edition, 2016, 128(32): 9535-9539.
[97] LIANG R W, JING F F, SHEN L J, et al. M@MIL-100(Fe) (M = Au, [101] JIANG H L, XIAO J D, HAN L L, et al. Integration of plasmonic
Pd, Pt) nanocomposites fabricated by a facile photodeposition effect and schottky junction into metal-organic framework composites:
process: Efficient visible-light photocatalysts for redox reactions in Steering charge flow for enhanced visible-light photocatalysis[J].
water[J]. Nano Research, 2015, 8: 3237-3249. Angewandte Chemie International Edition, 2018, 57(4): 1103-1107.
[98] YANG J H, WANG D E, HAN H X, et al. Roles of cocatalysts in [102] LIU P, HAN X. Comparative analysis on similarities and differences
photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical of hydrogen energy development in the World's top 4 largest
Research, 2013, 46(8): 1900-1909. economies: A novel framework[J]. International Journal of Hydrogen
[99] XING H M, TENG S Y, XING Z H, et al. Effect of Pt cocatalyst on Energy, 2022, 47(16): 9485-9503.
visible light driven hydrogen evolution of anthracene-based zirconium [103] Hydrogen Council. Hydrogen scaling up: A sustainable pathway for
metal-organic framework[J]. Applied Surface Science, 2020, 532: the global energy transition[R]. The Hydrogen Council, 2017.
(上接第 679 页) Technology (天津科技大学), 2018.
[17] DI K Y (狄凯莹), LYU J S N (吕佳帅男), CAI P L (蔡鹏麟), et al.
[11] FRIESEN C M, AMEDURI B. Outstanding telechelic Preparation and properties of fluorinated siloxane modified epoxy
perfluoropolyalkylethers and applications therefrom[J]. Progress in resin[J]. Fine Chemicals (精细化工), 2021, 38(4): 774-781.
Polymer Science, 2018, 81: 238-280. [18] LIU T (刘婷), HUANG A M (黄安民), ZHU Z Y (朱志勇), et al.
[12] LI H J (李海静), ZHANG X W (张香文), XU T Q (续同庆). Study Properties of perfluoropolyether modified ultra-high molecular
on preparation and properties of high-temperature fluorosilicones weight polyethylene composites[J]. China Plastics (中国塑料), 2015,
containing phenyl group[J]. Lubricating Oil (润滑油), 2020, 35(4): (4): 30-35.
21-25. [19] ZHANG D Y, LIU S W, ZHAO Q, et al. The application of free
[13] WANG F R (王福荣), LI H L (李鸿亮), LI L (李亮), et al. Determination radical reaction to hydrosilylation[J]. Henan Science (河南科技),
of maximum temperature of Z-type perfluoropolyalkylether lubricant 1997, 15(4): 395-401.
for bearing[J]. Lubrication Engineering (润滑与密封), 2022, (4): [20] WANG B B (王棒棒), FU L Y (符立言), ZHU H (朱海), et al.
176-182. Research progress of perfluoropolyether and its applicaton[J].
[14] KATO T, KAWAGUCHI M, SAJJAD M M, et al. Friction and Chemical Propellants & Polymeric Materials (化学推进剂与高分子
durability characteristics of ultrathin perfluoropolyether lubricant 材料), 2022, 20(3): 39-43, 51.
film composed of bonded and mobile molecular layers on [21] OKAZOW T. Development of the 'PERFECT' direct fluorination
diamond-like carbon surfaces[J]. Wear, 2004, 257(9): 909-915. method and its industrial applications[J]. Journal of Fluorine
[15] FENG Y Z (冯裕智), CHEN K (陈坤), TANG X D (唐旭东). Chemistry, 2015, 174: 120-131.
Preparation and properties of pefluoropolyether siloxane with abrasion [22] FENG Y Z (冯裕智), REN J (任军), TANG X D (唐旭东).
resistance[J]. Fine Chemicals (精细化工), 2017, 34(7): 730-734. Preparation of double-terminated hydroxyl perfluoropolyether from
[16] SUN Z P (孙志鹏). Study on microstructural modulation and hot hydrofluoropolyether fluorinated by fluorine gas[J]. Fine Chemicals
aging of XLPE[D]. Tianjin: Tianjin University of Science and (精细化工), 2021, 38(9): 1824-1829.