Page 239 - 《精细化工》2023年第3期
P. 239

第 3 期                        吴丰田,等:  羧酸离子液体/氧气催化氧化芳甲醇                                    ·695·


            苯甲醇亚甲基氢与羟基氢,协同作用使苯甲醇转化                             醇发生氧化反应。通过优化离子液体种类、O 2 压力、
            为中间体Ⅲ;随后,在 O 2 作用下,中间体Ⅲ迅速脱                         温度、反应时间和离子液体用量等,确立了反应的
            氢转化为苯甲醛Ⅱa。                                         适宜条件为:苯甲醇(54 mg, 0.5 mmol)、[EMIm][OAc]
            2.4   反应底物普适性                                      (85 mg, 0.5 mmol)、O 2 压力为 0.20 MPa、温度为
                 在适宜反应条件下,对底物的普适性进行了考                          130  ℃、时间为 12 h。该方法实现了苯甲醛Ⅱa 的
            察,结果见表 2。                                          克级规模制备和 20 种芳甲醛(酮)的高效合成。本
                                                               研究提出了离子液体[EMIm][OAc]通过阴离子作用
                        表 2   芳甲醛(酮)的合成       ①                于苯甲醇,经 O 2 氧化、脱水得到苯甲醛的反应机理。
                                                        ①
              Table 2    Synthesis of aromatic formaldehyde (ketone)    该方法可为芳甲醛(酮)类化合物的绿色合成提供
              序号               产物                 产率/%         理论依据,具有潜在的工业应用前景。
               1      苯甲醛(Ⅱa)                       90
               2      对甲氧基苯甲醛(Ⅱb)                   94         参考文献:
               3      3,5-二甲氧基苯甲醛(Ⅱc)               95         [1]   WU X P (吴小平). Study on production of benzaldehyde and benzoic
               4      对叔丁基苯甲醛(Ⅱd)                   92             acid and synthesis of jet fuel range biofuels using biomass[D].
               5      间甲基苯甲醛(Ⅱe)                    84             Heifei: University of Science and Technology of China (中国科技大学),
                                                                   2017.
               6      3,5-二甲基苯甲醛(Ⅱf)                82
                                                               [2]   KAWASAKI S, KEIGO K, MICHIKAZU H. Dioxygen activation by
               7      邻甲基苯甲醛(Ⅱg)                    62             a hexagonal SrMnO 3 perovskite catalyst for aerobic liquid-phase
               8      对氟苯甲醛(Ⅱh)                     86             oxidation [J]. ChemCatChem, 2016, 8(20): 3247-3253.
               9      对氯苯甲醛(Ⅱi)                     82         [3]   HOSSEINI-SARVARI M, AKRAMI Z. Visible-light assisted of nano
                                                                   Ni/g-C 3N 4 with efficient photocatalytic activity and stability for
               10     对溴苯甲醛(Ⅱj)                     81
                                                                   selective aerobic C—H  activation and epoxidation[J]. Journal of
               11     1-萘甲醛(Ⅱk)                     83
                                                                   Organometallic Chemistry, 2020, 928: 121549.
               12     对腈基苯甲醛(Ⅱl)                    72         [4]   SONG  Q,  FENG Q, ZHOU  M. Copper-catalyzed oxidative
               13     对硝基苯甲醛(Ⅱm)                    70             decarboxylative arylation of benzothiazoles with phenylacetic acids
               14     4-吡啶甲醛(Ⅱn)                    66             and  α-hydroxyphenylacetic acids with O 2 as the sole oxidant[J].
                                                                   Organic Letters, 2013, 15(23): 5990-5993.
               15     2-呋喃甲醛(Ⅱo)                    65
                                                               [5]   FALLAHNEZHAD S, AMOOZADEH A. Magnetic field-assisted
               16     对乙炔基苯甲醛(Ⅱp)                   68             photochemical oxidation of benzyl alcohol to corresponding aldehydes by
               17     二苯甲酮(Ⅱq)                      96             introducing TiO 2(P 25)-ZnO/Fe  as a novel nanophotocatalyst[J].
                                                                                      3+
               18     4,4'-二溴二苯甲酮(Ⅱr)               92             Journal of the Chinese Chemical Society, 2021, 68(11): 2085-2092.
               19     4,4'-二氨基二苯甲酮(Ⅱs)              90         [6]   MOZINA S, JERNEJ I. Aerobic oxidation of secondary alcohols with
                                                                   nitric acid and iron (Ⅲ) chloride as catalysts in fluorinated alcohol
               20     4-氨基二苯甲酮(Ⅱt)                  87
                                                                   [J]. The Journal of Organic Chemistry, 2019, 84(22): 14579-14586.
                 ①反应条件:芳甲醇(0.5 mmol)、1-乙基-3-甲基咪唑乙              [7]   BARUAH D,  HUSSAIN F L, SURI M,  et al. Bi(NO 3) 3•5H 2O and
            酸盐(85 mg, 0.5 mmol)、O 2 压力(0.20 MPa)、反应温度 130  ℃、      cellulose mediated  Cu-NPs—A highly efficient and novel catalytic
                                                                   system for aerobic oxidation of alcohols to carbonyls and synthesis
            反应时间 12 h。
                                                               [8]   of DFF from HMF[J]. Catalysis Communications, 2016, 77: 9-12.
                                                                   ZHANG S F, MIAO C X,  XU  D Q,  et al. CuI/N 4 ligand/TEMPO
                 如表 2 所示,取代苯甲醇类及二苯甲醇反应物                            derivatives: A mild and highly efficient system for aerobic oxidation
            均可发生反应,得到相应产物。对位给电子基团取                                 of primary alcohols[J]. Chinese Journal of Catalysis, 2014, 35(11):
                                                                   1864-1873.
            代苯甲醇可高效发生氧化反应,如产物Ⅱb、Ⅱc、                            [9]   STEINHOFF B A, GUZEI I A, STAHL S S. Mechanistic characterization
            Ⅱd 的产率分别为 94%、95%、92%(序号 2~4);                         of aerobic alcohol oxidation catalyzed by Pd(OAc) 2/pyridine
                                                                   including identification of the catalyst resting state and the origin of
            对位吸电子基团取代苯甲醇反应活性较低,如对腈
                                                                   nonlinear catalyst dependence[J]. Journal of the American Chemical
            基苯甲醛(Ⅱl)、对硝基苯甲醛(Ⅱm)产率分别为                               Society, 2004, 126(36): 11268-11278.
            72%、70%(序号 12、13)。由于空间位阻影响,间                       [10]  CHEN Z, XU J, REN Z, et al. High efficient photocatalytic selective
                                                                   oxidation of benzyl alcohol to  benzaldehyde by solvothermal-
            甲基苯甲醇反应活性远高于邻甲基苯甲醇,产物Ⅱ                                 synthesized ZnIn 2S 4 microspheres under visible light irradiation [J].
            e、Ⅱg 产率分别为 84%、62%(序号 5、7)。此外,                         Journal of Solid State Chemistry, 2013, 205: 134-141.
                                                               [11]  ZHANG G S, SHI Z Q, CHEN M F, et al. Ammonium chlorochromate
            在最优条件下,1-萘甲醇可被顺利氧化为 1-萘甲醛                              adsorbed on silica gel: A new reagent for the oxidation of alcohols
            (Ⅱk)(序号 11);杂环类甲醇亦可被氧化生成相                              and benzoins to corresponding carbonyl compounds[J]. Synthetic
                                                                   Comunications, 1997, 27(21): 3691-3696.
            应 的产物 (序 号 14 、 15 )。 综上可 知,体 系
                                                               [12]  TANG S, BAKER G A, ZHAO  H. Critical ether- and alcohol-
            [EMIm][OAc]/O 2 对反应底物有广泛的普适性,对多                        functionalized task-specific ionic liquids: Attractive properties and
            种官能团有强的耐受性。                                            applications[J]. Chemical Society Reviews, 2012, 41(10): 4030- 4066.
                                                               [13]  MIAO C X, HE L N, WANG J Q, et al. TEMPO and carboxylic acid
                                                                   functionalized  imidazolium salts/sodium nitrite: An efficient, reusable,
            3   结论                                                 transition metal-free catalytic system for aerobic oxidation of alcohols[J].
                                                                   Advanced Synthesis & Catalysis, 2009, 351(13): 2209- 2216.
                 以 O 2 为氧化剂,[EMIm][OAc]可高效催化芳甲                 [14]  HIRASHITA T, NAKANISHI M, UCHIDA T, et al. Ionic TEMPO in
   234   235   236   237   238   239   240   241   242   243   244