Page 53 - 《精细化工》2023年第3期
P. 53

第 3 期                           尹   扩,等:  纯有机室温磷光材料的应用                                   ·509·


            异发光性能、刺激响应性、可逆调控性等不同性质                                 Angewandte Chemie International Edition, 2018, 57(34): 10854-10858.
                                                               [10]  HIRATA S, TOTANI K, WATANABE T, et al. Relationship between
            的纯有机室温磷光体系,纯有机室温磷光材料从分
                                                                   room temperature  phosphorescence and deuteration position in a
            子结构设计、性能调控优化等方面得到了快速的发                                 purely aromatic compound[J]. Chemical Physics Letters, 2014, 591:
            展。尽管如此,纯有机室温磷光材料实际应用的研                                 119-125.
                                                               [11]  WANG J, HUANG Z Z, MA X,  et al. Visible-light-excited
            究尚处于起步阶段,仍有许多问题值得探讨:(1)                                room-temperature  phosphorescence in water by cucurbit[8]uril-
            引入卤素原子。利用重原子效应是一种提高磷光效                                 mediated supramolecular assembly[J]. Angewandte Chemie International
                                                                   Edition, 2020, 59(25): 9928-9933.
            率的主要手段,但重原子效应在提高系间窜越速率                             [12]  CAI S Z, SHI H  F, LI J W,  et al. Visible-light-excited  ultralong
            的同时也会提高磷光速率;(2)在水相环境中具有                                organic phosphorescence by manipulating intermolecular interactions[J].
                                                                   Advanced Materials, 2017, 29(35): 1701244.
            高效室温磷光发射的体系极少。在生物体内的应用
                                                               [13]  ZHANG  T, MA X,  TIAN H. A facile way to obtain near-infrared
            场景多为水相环境,传感、防伪等同样有防水性能                                 room-temperature phosphorescent soft materials based on  bodipy
            的需求;(3)目前纯有机室温磷光体系多为紫外光                                dyes[J]. Chemical Science, 2020, 11(2): 482-487.
                                                               [14]  LI D F, LU F F, WANG J,  et al.  Amorphous metal-free room-
            激发,但紫外光对细胞组织有较大的危害性,并且                                 temperature phosphorescent  small molecules with multicolor
            组织穿透深度远不及红外光,难以达到实际应用的                                 photoluminescence  via  a host-guest and dual-emission  strategy[J].
                                                                   Journal of the American Chemical Society, 2018, 140: 1916-1923.
            性能标准,如何构建高效的红外激发磷光体系是有                             [15]  WANG H Y, ZHOU L, CHEN W, et al. Exploration of room-temperature
            待解决的问题;(4)目前缺少有效的策略实现高效                                phosphorescence  and new mechanism on carbon dots in a
                                                                   polyacrylamide platform and their applications for anti-counterfeiting
            的有机圆偏振室温磷光,现有的此类体系普遍量子
                                                                   and information encryption[J]. Advanced Optical Materials, 2022,
            效率低,且 g lum 低而不稳定,所以,应用于圆偏振                            10(15): 2200678.
            电致发光器件(CP-OLED)以及防伪加密等领域的                          [16]  WANG Z F, SHEN J, XU B,  et al. Thermally driven amorphous-
                                                                   crystalline phase transition of carbonized polymer dots for multicolor
            有机圆偏振室温磷光材料性能不及无机材料。                                   room-temperature phosphorescence[J]. Advanced Optical Materials,
                 基于上述问题,未来对纯有机室温磷光材料的                              2021, 9(16): 2100421.
                                                               [17]  LIAO Q Y, GAO  Q H,  WANG J Q,  et al. 9,9-Dimethylxanthene
            研究应侧重于深入了解和认识其发光机理,从材料                                 derivatives with room-temperature phosphorescence: Substituent
            设计和性能提升入手提高纯有机室温磷光体系的量                                 effects and emissive properties[J]. Angewandte Chemie International
                                                                   Edition, 2020, 59(25): 9946-9951.
            子效率与磷光寿命,同时拓宽体系在水相中的磷光
                                                               [18]  DANG Q  X, JIANG  Y Y, LI  Z,  et al. Room-temperature
            强度与激发波长范围,开发具有更高应用价值、更                                 phosphorescence resonance energy transfer for construction of
            广应用范围的纯有机室温磷光材料。                                       near-infrared afterglow imaging agents[J]. Advanced Materials,
                                                                   2020, 32(52): 2006752.
                                                               [19]  ZHEN X, TAO  Y, PU K  Y,  et al. Ultralong phosphorescence of
            参考文献:
                                                                   water-soluble organic nanoparticles for in vivo afterglow imaging[J].
            [1]   GU L, WANG X, SINGH M,  et al. Organic room-temperature   Advanced Materials, 2017, 29(33): 1606665.
                 phosphorescent materials: From static to dynamic[J]. The Journal of   [20]  GAO L, ZHANG Y F, ZHAO Y L, et al. Water-induced blue-green
                 Physical Chemistry Letters, 2020, 11(15): 6191-6200.     variable nonconventional ultralong room  temperature phosphorescence
            [2]   KABE R,  NOTSUKA N, YOSHIDA K,  et al. Afterglow organic   from cross-linked  copolymers  via click chemistry[J]. Advanced
                 light-emitting diode[J]. Advanced Materials, 2016, 28(4): 655-660.     Optical Materials, 2021, 9(24): 2101284.
            [3]   XU L T, ZHOU  K, QIU X  Y,  et al. Tunable ultralong organic   [21]  LIU H C, PAN G C, YANG B, et al. Dual-emission of fluorescence
                 phosphorescence  modulated by main-group elements with different   and room-temperature phosphorescence for ratiometric and colorimetric
                 Lewis acidity and basicity[J]. Journal of Materials Chemistry C,   oxygen sensing and detection based  on  dispersion  of  pure organic
                 2020, 8(42): 14740-14747.                         thianthrene dimer in polymer host[J]. Advanced Optical Materials,
            [4]   KERUCKIENE R, VOLYNIUK D, LEITONAS K, et al. Dual emission   2022, 10(12): 2102814.
                 fluorescence/room-temperature phosphorescence of phenothiazine   [22]  LIU X Q, ZHANG K, WU  L Z,  et al. Monochromophore-based
                 and benzotrifluoride derivatives and its application for optical   phosphorescence and fluorescence from pure organic assemblies for
                 sensing of oxygen[J]. Sensors and Actuators B: Chemical, 2020, 321:   ratiometric hypoxia detection[J]. Angewandte Chemie International
                 128553.                                           Edition, 2020, 59(52): 23456-23460.
            [5]   ZHANG  T, MA X,  WU H  W,  et al. Molecular engineering for   [23]  CHEN H,  YAO X Y, MA X,  et al.  Amorphous, efficient, room-
                 metal-free amorphous materials with room-temperature phosphorescence[J].   temperature phosphorescent metal-free polymers and their applications as
                 Angewandte Chemie International Edition, 2020, 59(28): 11206-11216.     encryption ink[J]. Advanced Optical Materials, 2016, 4(9): 1397-1401.
            [6]   HE L, QIAO J, DUAN L, et al. Toward highly efficient solid-state   [24]  GU L, SHI H F, GU M X,  et al. Dynamic ultralong organic
                 white light-emitting electrochemical cells: Blue-green to red emitting   phosphorescence  by photoactivation[J]. Angewandte Chemie
                 cationic iridium complexes with imidazole-type ancillary ligand[J].   International Edition, 2018, 57(28): 8425-8431.
                 Advanced Functional Materials, 2009, 19(18): 2950-2960.     [25]  GMELCH M, THOMAS H, FRIES F, et al. Programmable transparent
            [7]   YANG X G, YAN  D P. Long-afterglow  metal-organic frameworks:   organic luminescent tags[J]. Science Advances, 2019, 5(2): eaau7310.
                 Reversible guest-induced phosphorescence tunability[J]. Chemical   [26]  XU W W,  CHEN  Y, LU Y L,  et al.  Tunable second-level room-
                 Science, 2016, 7(7): 4519-4526.                   temperature phosphorescence of solid supramolecules between
            [8]   HE Z K,  ZHAO  W J, LAM J,  et al.  White light emission  from a   acrylamide-phenylpyridium copolymers and cucurbit[7]uril[J]. Angewandte
                 single organic molecule with dual phosphorescence at room   Chemie International Edition, 2021, 61(6): e202115265.
                 temperature[J]. Nature Communications, 2017, 8: 416.     [27]  LIU R H, DING B B, LIU D Z, et al. Switchable circularly polarized
            [9]   MA X, XU C, WANG J, et al. Amorphous pure organic polymers for   room-temperature phosphorescence  based on pure  organic amorphous
                 heavy-atom-free efficient room-temperature phosphorescence emission[J].   binaphthyl polymer[J]. Chemical Engineering Journal, 2021, 421(1): 129732.
   48   49   50   51   52   53   54   55   56   57   58