Page 54 - 《精细化工》2023年第3期
P. 54
·510· 精细化工 FINE CHEMICALS 第 40 卷
[28] LI H, LI H H, WANG W, et al. Stimuli-responsive circularly cell imaging[J]. Nature Communications, 2020, 11(1): 4655.
polarized organic ultralong room temperature phosphorescence[J]. [40] WANG X F, XIAO H Y, CHEN P Z, et al. Pure organic room
Angewandte Chemie International Edition, 2020, 59(12): 4756-4762. temperature phosphorescence from excited dimers in self-assembled
[29] WEI Q H (韦钦河), LIU D (刘迪), LI D L (李德利), et al. Synthesis nanoparticles under visible and near-infrared irradiation in water[J].
and luminescent properties of 4-azafluoren-9-one derivatives[J]. Fine Journal of the American Chemical Society, 2019, 141(12): 5045-5050.
Chemicals (精细化工), 2019, 36(12): 2371-2377. [41] ZHOU Y S, QIN W, DU C, et al. Long-lived room-temperature
[30] ACHARYA N, HASAN M, RAY D, et al. Phenothiazine-quinoline phosphorescence for visual and quantitative detection of oxygen[J].
conjugates realizing intrinsic thermally activated delayed fluorescence and Angewandte Chemie International Edition, 2019, 58(35): 12102-12106.
room-temperature phosphorescence: Understanding the mechanism and [42] LONG P, FENG Y Y, CAO C, et al. Self-protective room-temperature
electroluminescence devices[J]. Advanced Photonics Research, 2021, phosphorescence of fluorine and nitrogen codoped carbon dots[J].
2(5): 2000201. Advanced Functional Materials, 2018, 28(37): 1800791.
[31] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. [43] YUAN Z Y, WANG J, CHEN L, et al. Methanol dynamically
Applied Physics Letters, 1987, 51(12): 913-915. activated room-temperature phosphorescence from a twisted
[32] BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient 4-bromobiphenyl system[J]. CCS Chemistry, 2020, 2(3): 158-167.
phosphorescent emission from organic electroluminescent devices[J]. [44] SUN S Y, WANG J, MA L W, et al. A universal strategy for organic
Nature, 1998, 395(6689): 151-154. fluid phosphorescence materials[J]. Angewandte Chemie International
[33] CALEB C, CHANGYEONG J, STEPHEN R. Reliable, all-phosphorescent Edition, 2021, 60(34): 18557-18560.
stacked white organic light emitting devices with a high color [45] WANG Z J, ZHAO J Z, DI DONATO M, et al. Increasing the
rendering index[J]. ACS Photonics, 2018, 5(2): 630-635. anti-Stokes shift in TTA upconversion with photosensitizers showing
[34] BERGAMINI G, FERMI A, BOTTA C, et al. A persulfurated red-shifted spin-allowed charge transfer absorption but a non-
benzene molecule exhibits outstanding phosphorescence in rigid compromised triplet state energy level[J]. Chemical Communications,
environments: From computational study to organic nanocrystals and 2019, 55(10): 1510-1513.
OLED applications[J]. Journal of Materials Chemistry C, 2013, [46] ZHAO X, YANG Y J, YU Y, et al. A cyanine-derivative photosensitizer
1(15): 2717-2724. with enhanced photostability for mitochondria-targeted photodynamic
[35] WANG T, SU X G, ZHANG X P, et al. Aggregation-induced dual- therapy[J]. Chemical Communications, 2019, 55(90): 13542-13545.
phosphorescence from organic molecules for nondoped light- [47] XU L T, ZHOU K, MA H L, et al. Ultralong organic phosphorescent
emitting diodes[J]. Advanced Materials, 2019, 31(51): 1904273. nanocrystals with long-lived triplet excited states for afterglow
[36] WANG J X, LIANG J X, XU Y C, et al. Purely organic phosphorescence imaging and photodynamic therapy[J]. ACS Applied Materials &
emitter-based efficient electroluminescence devices[J]. Journal of Interfaces, 2020, 12(16): 18385-18394.
Physical Chemistry Letters, 2019, 10(19): 5983-5988. [48] WANG S, XU M, HUANG K W, et al. Biocompatible metal-free
[37] WANG J X, LIANG B Y, WEI J B, et al. Highly efficient organic phosphorescent nanoparticles for efficiently multidrug-resistant
electrofluorescence material based on pure organic phosphor bacteria eradication[J]. Science China Materials, 2020, 63: 316-324.
sensitization[J]. Angewandte Chemie International Edition, 2021, [49] DURANTINI M, GREENE E, LINCOLN R, et al. Reactive oxygen
60(28): 15335-15339. species mediated activation of a dormant singlet oxygen photosensitizer:
[38] CHEN X F, XU C, WANG T, et al. Versatile room-temperature- From autocatalytic singlet oxygen amplification to chemicontrolled
phosphorescent materials prepared from N-substituted naphthalimides: photodynamic therapy[J]. Journal of the American Chemical Society,
Emission enhancement and chemical conjugation[J]. Angewandte 2016, 138(4): 1215-1225.
Chemie International Edition, 2016, 128(34): 10026-10030. [50] CHEN W H, ZHOU Z X, LUO G F, et al. Photosensitized H 2
[39] ZHOU W L, CHEN Y, YU Q L, et al. Ultralong purely organic evolution and NADPH formation by photosensitizer/carbon nitride
aqueous phosphorescence supramolecularpolymer for targeted tumor hybrid nanoparticles[J]. Nano Letters, 2019, 19(12): 9121-9130.
(上接第 487 页) apical sealing ability of β-Ca 2SiO 3/CSH composite materials in vitro [J].
Journal of Oral Science Research (口腔医学研究), 2015, 31(4): 359-360.
[86] JI M Z, CHEN H, YAN Y G, et al. Effects of tricalcium silicate/ [92] SEDGLEY C M, LENNAN S L, APPELBE O K. Survival of
sodium alginate/calcium sulfate hemihydrate composite cements on Enterococcus faecalis in root canals ex vivo[J]. International
osteogenic performances in vitro and in vivo[J]. Journal of Endodontic Journal, 2005, 38(10): 735-742.
Biomaterials Applications, 2020, 34(10): 1422-1436. [93] HUNG C J, KAO C T, SHIE M Y, et al. Comparison of host
[87] LI H, CHANG J. Stimulation of proangiogenesis by calcium silicate inflammatory responses between calcium-silicate base material and
bioactive ceramic[J]. Acta Biomaterialia, 2013, 9(2): 5379-5389. IRM[J]. Journal of Dental Sciences, 2014, 9(2): 158-164.
[88] POGGIO C, BELTRAMI R, COLOMBO M, et al. In vitro [94] WU B C, HUANG S C, DING S J. Comparative osteogenesis of
antibacterial activity of different pulp capping materials[J]. Journal of radiopaque dicalcium silicate cement and white-colored mineral
Clinical and Experimental Dentistry, 2015, 7(5): 584-588. trioxide aggregate in a rabbit femur model[J]. Materials, 2013, 6(12):
[89] POGGIO C, ARCIOLA C R, BELTRAMI R, et al. Cytocompatibility 5675-5689.
and antibacterial properties of capping materials[J]. The Scientific [95] TRONGKIJ P, SUTIMUNTANAKUL S, LAPTHANASUPKUL P, et
World Journal, 2014, 2014: 181945. al. Pulpal responses after direct pulp capping with two calcium-
[90] BHAVANA V, CHAITANYA K P, GANDI P, et al. Evaluation of silicate cements in a rat model[J]. Dental Materials Journal, 2019,
antibacterial and antifungal activity of new calcium-based cement 38(4): 584-590.
(Biodentine) compared to MTA and glass ionomer cement[J]. Journal [96] LIN Q, ZHANG W Y, LU C H, et al. In vivo investigation of
of Conservative Dentistry, 2015, 18(1): 44-46. biological responses to tricalcium silicate pastes in muscle tissue[J].
[91] ZHAO Y (赵昱), JIA H Y (贾洪宇), LIU M (刘敏). Evaluation of Ceramics International, 2014, 40(1): 1879-1883.