Page 54 - 《精细化工》2023年第3期
P. 54

·510·                             精细化工   FINE CHEMICALS                                 第 40 卷

            [28]  LI H, LI H H,  WANG  W,  et al. Stimuli-responsive circularly   cell imaging[J]. Nature Communications, 2020, 11(1): 4655.
                 polarized organic ultralong room temperature phosphorescence[J].   [40]  WANG X F, XIAO H Y, CHEN P  Z,  et al. Pure organic room
                 Angewandte Chemie International Edition, 2020, 59(12): 4756-4762.     temperature phosphorescence from excited dimers in self-assembled
            [29]  WEI Q H (韦钦河), LIU D (刘迪), LI D L (李德利), et al. Synthesis   nanoparticles under visible and near-infrared irradiation in water[J].
                 and luminescent properties of 4-azafluoren-9-one derivatives[J]. Fine   Journal of the American Chemical Society, 2019, 141(12): 5045-5050.
                 Chemicals (精细化工), 2019, 36(12): 2371-2377.     [41]  ZHOU Y S, QIN  W, DU C,  et al. Long-lived  room-temperature
            [30]  ACHARYA N, HASAN M, RAY D, et al. Phenothiazine-quinoline   phosphorescence for visual and quantitative detection of oxygen[J].
                 conjugates realizing intrinsic thermally activated delayed fluorescence and   Angewandte Chemie International Edition, 2019, 58(35): 12102-12106.
                 room-temperature phosphorescence: Understanding the mechanism and   [42]  LONG P, FENG Y Y, CAO C, et al. Self-protective room-temperature
                 electroluminescence devices[J]. Advanced Photonics Research, 2021,   phosphorescence of fluorine and nitrogen codoped carbon dots[J].
                 2(5): 2000201.                                    Advanced Functional Materials, 2018, 28(37): 1800791.
            [31]  TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J].   [43]  YUAN Z  Y, WANG J, CHEN L, et al. Methanol dynamically
                 Applied Physics Letters, 1987, 51(12): 913-915.   activated room-temperature phosphorescence from  a twisted
            [32]  BALDO M A, O'BRIEN D F, YOU  Y,  et al. Highly efficient   4-bromobiphenyl system[J]. CCS Chemistry, 2020, 2(3): 158-167.
                 phosphorescent emission from organic electroluminescent devices[J].   [44]  SUN S Y, WANG J, MA L W, et al. A universal strategy for organic
                 Nature, 1998, 395(6689): 151-154.                 fluid phosphorescence materials[J]. Angewandte Chemie International
            [33]  CALEB C, CHANGYEONG J, STEPHEN R. Reliable, all-phosphorescent   Edition, 2021, 60(34): 18557-18560.
                 stacked white organic light emitting devices with a high color   [45]  WANG Z J,  ZHAO J  Z, DI  DONATO M,  et al. Increasing the
                 rendering index[J]. ACS Photonics, 2018, 5(2): 630-635.     anti-Stokes shift in TTA upconversion with photosensitizers showing
            [34]  BERGAMINI G,  FERMI A, BOTTA C,  et al. A persulfurated   red-shifted spin-allowed charge transfer absorption  but a non-
                 benzene  molecule exhibits  outstanding phosphorescence in rigid   compromised  triplet state energy level[J]. Chemical Communications,
                 environments: From computational study to organic nanocrystals and   2019, 55(10): 1510-1513.
                 OLED applications[J]. Journal of Materials Chemistry C, 2013,   [46]  ZHAO X, YANG Y J, YU Y, et al. A cyanine-derivative photosensitizer
                 1(15): 2717-2724.                                 with enhanced  photostability  for mitochondria-targeted photodynamic
            [35]  WANG T, SU X G, ZHANG X P, et al. Aggregation-induced dual-   therapy[J]. Chemical Communications, 2019, 55(90): 13542-13545.
                 phosphorescence from organic molecules for nondoped light-   [47]  XU L T, ZHOU K, MA H L, et al. Ultralong organic phosphorescent
                 emitting diodes[J]. Advanced Materials, 2019, 31(51): 1904273.     nanocrystals with long-lived triplet excited states for afterglow
            [36]  WANG J X, LIANG J X, XU Y C, et al. Purely organic phosphorescence   imaging and photodynamic therapy[J]. ACS  Applied Materials &
                 emitter-based efficient electroluminescence devices[J]. Journal of   Interfaces, 2020, 12(16): 18385-18394.
                 Physical Chemistry Letters, 2019, 10(19): 5983-5988.     [48]  WANG S,  XU M,  HUANG K W,  et al. Biocompatible metal-free
            [37]  WANG J X, LIANG B  Y, WEI J B,  et al. Highly efficient   organic phosphorescent nanoparticles for efficiently multidrug-resistant
                 electrofluorescence  material based  on pure organic phosphor   bacteria eradication[J]. Science China Materials, 2020, 63: 316-324.
                 sensitization[J]. Angewandte Chemie  International Edition, 2021,   [49]  DURANTINI M, GREENE E, LINCOLN R, et al. Reactive oxygen
                 60(28): 15335-15339.                              species mediated activation of a dormant singlet oxygen photosensitizer:
            [38]  CHEN X F, XU  C, WANG  T,  et al. Versatile room-temperature-   From autocatalytic  singlet oxygen amplification to chemicontrolled
                 phosphorescent materials prepared  from  N-substituted naphthalimides:   photodynamic therapy[J]. Journal of the American Chemical Society,
                 Emission enhancement and chemical conjugation[J]. Angewandte   2016, 138(4): 1215-1225.
                 Chemie International Edition, 2016, 128(34): 10026-10030.     [50]  CHEN W H, ZHOU Z X, LUO G F,  et al. Photosensitized H 2
            [39]  ZHOU W L,  CHEN  Y,  YU Q L,  et al. Ultralong purely organic   evolution and NADPH formation  by photosensitizer/carbon nitride
                 aqueous phosphorescence supramolecularpolymer for targeted tumor   hybrid nanoparticles[J]. Nano Letters, 2019, 19(12): 9121-9130.




            (上接第 487 页)                                            apical sealing ability of β-Ca 2SiO 3/CSH composite materials in vitro [J].
                                                                   Journal of Oral Science Research (口腔医学研究), 2015, 31(4): 359-360.
            [86]  JI M Z, CHEN H,  YAN  Y G,  et al. Effects of tricalcium silicate/   [92]  SEDGLEY  C  M,  LENNAN S L, APPELBE O K. Survival of
                 sodium alginate/calcium sulfate hemihydrate composite cements on   Enterococcus faecalis in root  canals  ex vivo[J]. International
                 osteogenic performances in vitro  and  in vivo[J]. Journal of   Endodontic Journal, 2005, 38(10): 735-742.
                 Biomaterials Applications, 2020, 34(10): 1422-1436.   [93]  HUNG  C J,  KAO C T, SHIE M  Y,  et al. Comparison of host
            [87]  LI H, CHANG J. Stimulation of proangiogenesis by calcium silicate   inflammatory responses between calcium-silicate base  material and
                 bioactive ceramic[J]. Acta Biomaterialia, 2013, 9(2): 5379-5389.   IRM[J]. Journal of Dental Sciences, 2014, 9(2): 158-164.
            [88]  POGGIO C,  BELTRAMI R, COLOMBO M,  et al. In vitro   [94]  WU B C, HUANG S C, DING S J.  Comparative osteogenesis  of
                 antibacterial activity of different pulp capping materials[J]. Journal of   radiopaque dicalcium silicate  cement and white-colored mineral
                 Clinical and Experimental Dentistry, 2015, 7(5): 584-588.   trioxide aggregate in a rabbit femur model[J]. Materials, 2013, 6(12):
            [89]  POGGIO C, ARCIOLA C R, BELTRAMI R, et al. Cytocompatibility   5675-5689.
                 and antibacterial properties of capping  materials[J].  The  Scientific   [95]  TRONGKIJ P, SUTIMUNTANAKUL S, LAPTHANASUPKUL P, et
                 World Journal, 2014, 2014: 181945.                al. Pulpal responses after direct pulp capping with two calcium-
            [90]  BHAVANA V,  CHAITANYA K P, GANDI P,  et al. Evaluation of   silicate cements in a rat  model[J]. Dental Materials Journal, 2019,
                 antibacterial and antifungal activity of new calcium-based cement   38(4): 584-590.
                 (Biodentine) compared to MTA and glass ionomer cement[J]. Journal   [96]  LIN Q,  ZHANG  W Y, LU C H,  et al.  In vivo investigation of
                 of Conservative Dentistry, 2015, 18(1): 44-46.    biological responses to tricalcium silicate pastes in muscle tissue[J].
            [91]  ZHAO Y (赵昱), JIA H Y (贾洪宇), LIU M (刘敏). Evaluation of   Ceramics International, 2014, 40(1): 1879-1883.
   49   50   51   52   53   54   55   56   57   58   59