Page 125 - 《精细化工》2023年第4期
P. 125
す 4 䲠ͦͦ喑ぶ: ็ߌ㘪㏠ㆠٶ᩼ݯ NaYF 4 ńYb,Tm@NaGdF 4 ńYb@PDA/PEI-MnO 2 ⮱ݣิࣷោ㣹ᕔ㘪g811g
3+
3+
Preparation and properties of targeting photosensitizer NaYF 4:Yb, Yb /Er @NaYF 4@MnO 2@Au[J]. Dalton Transactions, 2021,
Tm@NaGdF 4:Yb@TiO 2@PEI-PAA-FA[J]. Fine Chemicals (㏳ࡃ 50(31): 10838-10844.
ጒ), 2018, 35(11): 1915-1920. [26] AN P, ZUO F, LI X, et al. A bio-inspired polydopamine approach to
[13] ZOU H Y (䗦卬䯮), GUO Q J (䘚䱿ཌ), HUANG C Z (叱ឬᔄ), preparation of gold-coated Fe 3O 4 core-shell nanoparticles: Synthesis,
et al. Polydopamine-embedded nonstoichiometric copper chalcogenide characterization and mechanism[J]. Nano: Brief Reports and
nanoparticles for chemotherapy-photothermal synergistic therapy Reviews, 2013, 8(6): 1350061.
against cancer cells[J]. Chinese Journal of Analytical Chemistry (ܳ [27] HOU D, TAO H, ZHU X, et al. Polydopamine and MnO 2 core-shell
Ჽࡃ႓), 2021, 49(7): 1228-1236. composites for high-performance supercapacitors[J]. Applied Surface
[14] QIN Y J (⼓⢶Ო), HAN Y (䴖Ⴔ), JIN H (䲠Ლ), et al. Drug-loaded Science, 2017, 419: 580-585.
copper sulfide nanoparticles with high photothermal conversion and [28] HONG E, WANG Y, LIU L, et al. Controlled synthesis of gadolinium
pH-stimuli response for drug delivery[J]. Chinese Science Bulletin fluoride upconversion nanoparticles capped with oleic acid or
(႓䕇្), 2020, 65(Z1): 203-212. polyethylene glycol molecules via one-step hydrothermal method and
[15] CHENG W, ZENG X, CHEN H, et al. Versatile polydopamine their toxicity to cancer cells[J]. Journal of Nanoparticle Research,
platforms: Synthesis and promising applications for surface 2020, 22: 343.
modification and advanced nanomedicine[J]. ACS Nano, 2019, [29] CAO X N (ᰦ⑴ẍ), HU J H (㘎䲆ᚔ), ZHANG M L (ᑍ᩼ͪ), et al.
13(8): 8537-8565. Preparation of infrared light-triggered nanophotosensitizer UCNPs@
[16] YANG Z, FENG F, JIANG W, et al. Designment of polydopamine/ SiO 2@TiO 2@MnO 2 and their performance properties[J]. Journal of
bacterial cellulose incorporating copper (Ĕ) sulfate as an antibacterial Zhejiang Normal University:Natural Science(⊆ጵ㠰๔႓႓្:㜗
wound dressing[J]. Biomaterials Advances, 2022, 134: 112591. ♣႓❵), 2022, 45(3): 316-322.
[17] YUAN S, LIU Z, LIANG T, et al. Au-decorated NaYF 4:Yb,Tm@ [30] LIU Y, BUSSCHER H J, ZHAO B, et al. Surface-adaptive,
NaGdF 4:Yb@TiO 2 nanophotosensitizers for photodynamic therapy antimicrobially loaded, micellar nanocarriers with enhanced penetration
and MR/PET imaging[J]. Materials Letters, 2022, 314: 131926. and killing efficiency in staphylococcal biofilms[J]. ACS Nano, 2016,
[18] DAS S, SAMANTA A, JANA S. Light-assisted synthesis of 10(4): 4779-4789.
hierarchical flower-Like MnO 2 nanocomposites with solar light induced [31] LI L, SHI Y, HUANG J, et al. Protection from hydrogen peroxide
enhanced photocatalytic activity[J]. ACS Sustainable Chemistry & stress relies mainly on AhpCF and KatA 2 in Stenotrophomonas
Engineering, 2017, 5(10): 9086-9094. maltophilia[J]. Journal of Biomedical Science, 2020, 27: 37.
[19] LI X, FANG G, QIAN X, et al. Z-scheme heterojunction of low [32] ZHU X, LIU Y, YUAN G, et al. In situ fabrication of MS@MnO 2
conduction band potential MnO 2 and biochbased g-C 3N 4 for efficient hybrid as nanozymes for enhancing ROS-mediated breast cancer
formaldehyde degradation[J]. Chemical Engineering Journal, 2022, therapy[J]. Nanoscale, 2020, 12(43): 22317-22329.
428: 131052. [33] LIU Y, AI K, LU L. Polydopamine and its derivative materials:
[20] ZHANG C, CHEN W, LIU L, et al. An O 2 delf-dupplementing and Synthesis and promising application in energy, enviromental, and
reactive-oxygen-species-circulating amplified nanoplatform via biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.
H 2O/H 2O 2 splitting for tumor imaging and photodynamic therapy[J]. [34] JIAO S, ZHENG S, YIN D, et al. Aqueous photolysis of tetracycline
Advanced Functional Materials, 2017, 27(43): 1700626. and toxicity of photolytic products to luminescent bacteria[J].
[21] FU S (Ѕ), MA Y H (侙㞧ܪ), ZHANG A Q (ᑍ❞⌲), et al. Chemosphere, 2008, 73(3): 377-382.
Synthesis and photodynamics of fullerene-manganese dioxide [35] YAN L, CHEN L, ZHAO X, et al. pH switchable nanoplatform for in
multifunctional nanocomposites[J]. Fine Chemicals (㏳ࡃጒ), 2021, vivo persistent luminescence imaging and precise photothermal
38(5): 954-959. therapy of bacterial infection[J]. Advanced Functional Materials,
[22] LIU L, WANG C, LI Y, et al. Manganese dioxide nanozyme for 2020, 30(14): 1909042.
reactive oxygen therapy of bacterial infection and wound healing[J]. [36] BUDIMIR M, JIJIE R, YE R, et al. Efficient capture and
Biomaterials Science, 2021, 9(17): 5965-5976. photothermal ablation of planktonic bacteria and biofilms using
[23] HU J H (㘎䲆ᚔ), CAO X N (ᰦ⑴ẍ), DONG M J (㦐ႌᲝ), et al. reduced graphene oxide-polyethyleneimine flexible nanoheaters[J].
Preparation and iodine labeling properties of nanophotosensitizer Journal of Materials Chemistry B, 2019,7(17): 2771-2781.
NaYF 4:Yb,Tm@NaGdF 4:Yb@SiO 2@TiO 2-Au[J]. Chinese Science [37] AKSHAYA B, LIU H, MUTHU K G J, et al. Quasi-continuous wave
Bulletin (႓䕇្), 2020, 65(2/3): 155-166. near-infrared excitation of upconversion nanoparticles for optogenetic
[24] LIU F, HE X, LEI Z, et al. Facile preparation of doxorubicin-loaded manipulation of C. elegans[J]. Small, 2016, 12(13): 1732-1743.
upconversion@polydopamine nanoplatforms for simultaneous in [38] DING X, LIU J, LIU D, et al. Multifunctional core/satellite
3+
vivo multimodality imaging and chemophotothermal synergistic polydopamine@Nd -sensitized upconversion nanocomposite: A
therapy[J]. Advanced Healthcare Materials, 2015, 4(4): 559-568. single 808 nm near-infrared light-triggered theranostic platform for
[25] XU X, FU M R, LI P H, et al. The pH responsive upconversion in vivo imaging-guided photothermal therapy[J]. Nano Research,
fluorescence and photothermal conversion properties of NaYF 4ń 2017, 10(10): 3434-3446.