Page 125 - 《精细化工》2023年第4期
P. 125

す 4 ᱌    䲠ͦͦ喑ぶ:  ็ߌ㘪㏠ㆠٶ᩼ݯ NaYF 4 ńYb,Tm@NaGdF 4 ńYb@PDA/PEI-MnO 2 ⮱ݣิࣷោ㣹ᕔ㘪g811g


                                                                        3+
                                                                     3+
                 Preparation and properties of targeting photosensitizer  NaYF 4:Yb,   Yb /Er @NaYF 4@MnO 2@Au[J]. Dalton Transactions, 2021,
                 Tm@NaGdF 4:Yb@TiO 2@PEI-PAA-FA[J]. Fine Chemicals (㇫㏳ࡃ  50(31): 10838-10844.
                 ጒ), 2018, 35(11): 1915-1920.                  [26]  AN P, ZUO F, LI X, et al. A bio-inspired polydopamine approach to
            [13]  ZOU H Y  (䗦卬䯮), GUO Q J (䘚䱿ཌ),  HUANG C Z (叱ឬᔄ),   preparation of gold-coated Fe 3O 4 core-shell nanoparticles: Synthesis,
                 et al. Polydopamine-embedded nonstoichiometric copper chalcogenide   characterization and mechanism[J]. Nano: Brief Reports and
                 nanoparticles for  chemotherapy-photothermal synergistic therapy   Reviews, 2013, 8(6): 1350061.
                 against cancer cells[J]. Chinese Journal of Analytical Chemistry (ܳ  [27]  HOU D, TAO H, ZHU X, et al. Polydopamine and MnO 2 core-shell
                 Ჽࡃ႓), 2021, 49(7): 1228-1236.                     composites for high-performance supercapacitors[J]. Applied Surface
            [14]  QIN Y J (⼓⢶Ო), HAN Y (䴖Ⴔ), JIN H (䲠Ლ), et al. Drug-loaded   Science, 2017, 419: 580-585.
                 copper sulfide nanoparticles with high photothermal conversion and   [28]  HONG E, WANG Y, LIU L, et al. Controlled synthesis of gadolinium
                 pH-stimuli response for drug delivery[J]. Chinese Science Bulletin   fluoride upconversion  nanoparticles  capped with  oleic acid or
                 (⻾႓䕇្), 2020, 65(Z1): 203-212.                    polyethylene glycol molecules via one-step hydrothermal method and
            [15]  CHENG W, ZENG X,  CHEN H,  et al. Versatile polydopamine   their toxicity to cancer cells[J]. Journal of Nanoparticle Research,
                 platforms: Synthesis and promising applications for surface   2020, 22: 343.
                 modification and  advanced nanomedicine[J]. ACS  Nano, 2019,   [29]  CAO X N (ᰦ⑴ẍ), HU J H (㘎䲆ᚔ), ZHANG M L (ᑍ᩼ͪ), et al.
                 13(8): 8537-8565.                                 Preparation of infrared light-triggered nanophotosensitizer UCNPs@
            [16]  YANG Z, FENG F, JIANG W, et al. Designment of polydopamine/   SiO 2@TiO 2@MnO 2 and their performance properties[J]. Journal of
                 bacterial cellulose incorporating copper (Ĕ) sulfate as an antibacterial   Zhejiang Normal University:Natural Science(⊆↌ጵ㠰๔႓႓្:㜗
                 wound dressing[J]. Biomaterials Advances, 2022, 134: 112591.   ♣⻾႓❵), 2022, 45(3): 316-322.
            [17]  YUAN S,  LIU Z,  LIANG T, et al.  Au-decorated NaYF 4:Yb,Tm@   [30]  LIU  Y, BUSSCHER H J, ZHAO B,  et al. Surface-adaptive,
                 NaGdF 4:Yb@TiO 2  nanophotosensitizers for photodynamic therapy   antimicrobially loaded, micellar nanocarriers with enhanced penetration
                 and MR/PET imaging[J]. Materials Letters, 2022, 314: 131926.   and killing efficiency in staphylococcal biofilms[J]. ACS Nano, 2016,
            [18]  DAS S, SAMANTA A, JANA S. Light-assisted synthesis of   10(4): 4779-4789.
                 hierarchical flower-Like MnO 2 nanocomposites with solar light induced   [31]  LI L, SHI Y, HUANG J, et al. Protection from hydrogen peroxide
                 enhanced photocatalytic activity[J]. ACS Sustainable Chemistry &   stress relies mainly on AhpCF and KatA 2 in  Stenotrophomonas
                 Engineering, 2017, 5(10): 9086-9094.              maltophilia[J]. Journal of Biomedical Science, 2020, 27: 37.
            [19]  LI X, FANG G,  QIAN X,  et al. Z-scheme heterojunction of low   [32]  ZHU X, LIU Y, YUAN G, et al. In situ fabrication of MS@MnO 2
                 conduction band potential MnO 2 and biochbased g-C 3N 4 for efficient   hybrid as nanozymes for enhancing  ROS-mediated breast cancer
                 formaldehyde degradation[J]. Chemical Engineering Journal, 2022,   therapy[J]. Nanoscale, 2020, 12(43): 22317-22329.
                 428: 131052.                                  [33]  LIU Y, AI K, LU L. Polydopamine  and its derivative materials:
            [20]  ZHANG C, CHEN W, LIU L, et al. An O 2 delf-dupplementing and   Synthesis and promising application in energy, enviromental, and
                 reactive-oxygen-species-circulating amplified nanoplatform  via   biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.
                 H 2O/H 2O 2 splitting for tumor imaging and photodynamic therapy[J].   [34]  JIAO S, ZHENG S, YIN D, et al. Aqueous photolysis of tetracycline
                 Advanced Functional Materials, 2017, 27(43): 1700626.   and toxicity of photolytic products to luminescent bacteria[J].
            [21]  FU S (Ѕ౐), MA Y H (侙㞧ܪ), ZHANG A Q (ᑍ❞⌲),  et al.   Chemosphere, 2008, 73(3): 377-382.
                 Synthesis and  photodynamics of fullerene-manganese dioxide   [35]  YAN L, CHEN L, ZHAO X, et al. pH switchable nanoplatform for in
                 multifunctional nanocomposites[J]. Fine Chemicals (㇫㏳ࡃጒ), 2021,   vivo persistent luminescence imaging and precise photothermal
                 38(5): 954-959.                                   therapy of bacterial infection[J]. Advanced Functional Materials,
            [22]  LIU L, WANG C, LI  Y,  et al. Manganese dioxide nanozyme for   2020, 30(14): 1909042.
                 reactive oxygen therapy of bacterial infection and wound healing[J].   [36]  BUDIMIR M, JIJIE R,  YE  R,  et al. Efficient capture and
                 Biomaterials Science, 2021, 9(17): 5965-5976.     photothermal ablation  of planktonic bacteria and biofilms using
            [23]  HU J H (㘎䲆ᚔ), CAO X N (ᰦ⑴ẍ), DONG M J (㦐ႌᲝ), et al.   reduced graphene oxide-polyethyleneimine flexible nanoheaters[J].
                 Preparation and  iodine labeling  properties of  nanophotosensitizer   Journal of Materials Chemistry B, 2019,7(17): 2771-2781.
                 NaYF 4:Yb,Tm@NaGdF 4:Yb@SiO 2@TiO 2-Au[J]. Chinese Science   [37]  AKSHAYA B, LIU H, MUTHU K G J, et al. Quasi-continuous wave
                 Bulletin (⻾႓䕇្), 2020, 65(2/3): 155-166.          near-infrared excitation of upconversion nanoparticles for optogenetic
            [24]  LIU F, HE X, LEI Z, et al. Facile preparation of doxorubicin-loaded   manipulation of C. elegans[J]. Small, 2016, 12(13): 1732-1743.
                 upconversion@polydopamine nanoplatforms for  simultaneous  in   [38]  DING X, LIU J, LIU D,  et al. Multifunctional  core/satellite
                                                                               3+
                 vivo  multimodality imaging and chemophotothermal synergistic   polydopamine@Nd -sensitized upconversion nanocomposite: A
                 therapy[J]. Advanced Healthcare Materials, 2015, 4(4): 559-568.   single 808 nm near-infrared light-triggered theranostic platform for
            [25]  XU X, FU M R,  LI P H,  et al.  The pH responsive upconversion   in vivo imaging-guided  photothermal therapy[J]. Nano  Research,
                 fluorescence and photothermal  conversion properties of NaYF 4ń  2017, 10(10): 3434-3446.
   120   121   122   123   124   125   126   127   128   129   130