Page 124 - 《精细化工》2023年第4期
P. 124
g810g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
㣹≨ᕔ䉸εڣᰭҠ⮱ោ㣹ᕔ㘪ȡᣕ≸࣌ज㘪ͧ喟 UPMȡߍ KMnO 4 ⮱⩕䛼जВ倅 UPM ͚ MnO 2
ᬖٶ⚔ϔ⩌⮱ ROS ᄦ㏳㘋㛉⮱Ⴙ᪡ᕔ䕍ⵡ౼喑 ⮱Ⱕᄦक़䛼喑ᑧڣౕᑞ䚥ᕔϸ䉕͚יࡃ H 2 O 2 ⏣⋟
䮼Ɑٶ⚔⮱䔈㵹হ㏳㘋㛉ⵡᢌ⮱ߍ䛺喑ROS ᰡღᭀ ϔ⩌ O 2 ⮱㘪߈ȡ
Ⱑᣒ҉⩕λ㏳㣹ڲ⮱㏳㘋கᝃߌ㘪ᕔ⩌➖ܳၽ喑ᱭ 喍2喎UPM ᄦ TC ⮱䒪㢜䛼ͧ 22.6%喑ౕ pH ͧ
㣹᩵⢴㣤ᓄࡴ [36] 喠ᒀ UPM ͚⮱ MnO 2 ᣒ㼓ݝ㏳㣹 5.0Ƞ6.5 হ 7.4 ⮱㑀۟⋟͚ 24 h ㉜⼜䛷㢜⢴ܳݘͧ
1
㏳㘋䉕͚⮱ڲ⎽ᕔ H 2 O 2 ᬣ喑⩌⮱ O 2 ज倅 O 2 87.1%Ƞ79.1%হ 65.6%喑㞜ສ⮱㢜➖䉌䒪̻䛷ᩫ㘪
1
⮱ϔ⩌᩵⢴喑 O 2 হ H 2 O 2 ܳ㼐⩌⮱•OH जВ䔈̭ ߈ࣷ pH ৺Ꮑ⮱䛷ᩫ㵹ͧᰶߖλោ⩌㉍㢜᩵⮱ٲܳ
ₒᑧ㏳㣹⮱▚≨ [32] ȡ㏳㘋㛉⮱ⵡᢌहᵤᰶݖλ TC ࣾᡒȡ
⮱ࡃ႓ើ㣹ߌ᩵হٶᕔ⮱ࣾᡒ喑ₑ喑UPM/TC 喍3喎ౕ 1.2 W/cm ⮱ 980 nm NIR ٶ⚔ᄱ 10 min
2
Ռߖٶߕ߈-ោ⩌㉍⮱ࡼहោ㣹ߌ᩵㶕⣝ܧᰭ倅᩵ ऻ喑䉕䛼⊀Ꮣͧ 0.8 g/L ⮱ UPM/TC ᄦ๔㗍ᱳ㣹⮱ᱭ
⮱ោ㣹ᕔ㘪ȡ䰭㺮䄡ᬻ⮱᭜喑⩞λⅡ⏣⋟ᄦ 980 nm 㣹⢴䓫ݝ 99.7%喑хλࢂ⠙Ҭ⩕ TC ᝃ UPM ⮱᩵喑
NIR ٶ⮱॥ᩣ҉⩕喑̷䔝Ҁ㈨ౕٶ⚔䓴⼸͚ϔ⩌⮱ ᆂ⣝ܧٶߕ߈-ោ⩌㉍ࡼहᱭ㣹᩵Ꮑȡхࡃٶ᩼ݯ⮱
ࡴ⍖ᄦᱭ㣹᩵ᰶ̭Ⴧ⮱Ӱ䔈҉⩕喑ᩦ⩕क़ᰶ㘶۟ ㏱হⵁ⾣ٶ᩼ݯ⮱⩌➖ᕔࣷᄦڣЃ㜡⫲㣹⮱䔯
䄰ݣԎत⮱ 980 nm NIR ٶ⓭ࣾٶ᩼ݯ喑जВౕԊᠮ ⩕ᕔ喑ᄳͧ⩕λ⇨⫄ёऐ㏳㣹ᙌᴀ⮱ NIR ٶ侞ߕٶ
ٶ⚔ᬣ䬡হٶ⚔㘪䛼⮱У̸倅 PDT ᩵⢴Ꭳᰶ᩵ ᩼ݯ⮱ᐭࣾӈᕊ䌜হ侹࣯㔰ȡ
䭺ѻ NIR ٶ⮱䓴☚᩵Ꮑ [37] ȡₑใ喑㠒В Nd ᣧᱯ⮱
UCNPs 喍ຯ NaYF 4 ń Yb,Er@NaYbF 4 ń ࣯㔰᪴⡛喟
Yb,Nd@NaYbF 4 ńNd [38] 喎ݣิ UPM喑ᎣҬ⩕Ⅱহ⩌ [1] DIACOVICH L, GORVEL J P. Bacterial manipulation of in nate
immunity to promote infection[J]. Nat Rev Microbiol, 2010, 8:
➖㏱㏴॥ᩣ䒰ᑞ⮱ 808 nm ⓭ٶ҉ͧ⓭ࣾٶ⎽喑ϓज
117-128.
䭺ѻ PDT ⮱䓴☚᩵Ꮑ喑ऻᄳ䔈̭ₒᣏ㉏ UPM/TC [2] ROBERT C D, LEAPER D J, Assadian O. The role of topical antiseptic
⩕λᄼߕ➖ёऐ㔽㢜㣹ᙌᴀ⇨⫄⮱ज㵹ᕔȡ agents within antimicrobial stewardship strategies for prevention and
treatment of surgical site and chronic open wound infection[J].
Advance in Wound Care, 2017, 6(2): 63-71.
[3] MA Y, XU H, SUN B, et al. pH-responsive oxygen and hydrogen
peroxide self-supplying nanosystem for photodynamic and chemodynamic
therapy of wound infection[J]. ACS Applied Materials & Interfaces,
2021, 13(50): 59720-59730.
[4] LIU W, GU H, RAN B, et al. Accelerated antibacterial red-carbon
dots with photodynamic therapy against multidrug-resistant Acinetobacter
baumannii[J]. Science China Materials, 2022, 65(3): 845-854.
[5] ZHAO K C (䊢ܜ䊲), ZHAO X (䊢ᬚ), YAN X P (͒⻭Ꭰ). pH
reversibly activated asymmetric cyanine photosensitizer for photodynamic
antibacterial[J]. Chinese Journal of Applied Chemistry (Ꮑ⩕ࡃ႓),
2020, 37(6): 620-626.
[6] ZHAO Y, HU M, ZHANG Y, et al. Multifunctional therapeutic
strategy of Ag-synergized dual-modality up-conversion nanoparticles
to achieve the rapid and sustained cidality of methicillin-resistant
Staphylococcus aureus[J]. Chemical Engineering Journal, 2020, 385:
123980.
[7] LI Z, LU S, LIU W, et al. Synergistic lysozyme-photodynamic
therapy against resistant bacteria based on an intelligent upconversion
nanoplatform[J]. Angewandte Chemi International Edition, 2021,
60(35): 19201-19206.
[8] YE Z, WANG S, XU Y, et al. Enhanced inhibition of drug-resistant
Escherichia coli by tetracycline hydrochloride-loaded multipore
ఫ 11 ౕ叾ᯄহ NIR ٶ⚔ᄱ 5 হ 10 min ᬣ̺हោ㣹ݯᄦ mesoporous silica nanoparticles[J]. Molecules, 2022, 27(4): 1218.
[9] LIU Z, TANG X, HUANG C, et al. 808 nm NIR-triggered Camellia
๔㗍ᱳ㣹ើ㣹᩵⚔❴喍a喎হ㏳㣹ႅ≨⢴喍b喎 sapogein/curcumin-based antibacterial upconversion nanoparticles
Fig. 11 Images (a) and bacterial viability (b) of E. coli treated for synergistic photodynamic-chemical combined therapy[J]. Inorganic
without and with antibacterial agents in the dark Chemistry Frontiers, 2022, 9(8): 1836-1846.
and exposed to 980 nm NIR light for 5 and 10 min [10] LIN C, QIAO S, YU C, et al. Periodic mesoporous silica and organosilica
with controlled morphologies as carriers for drug release[J]. Microporous
and Mesoporous Materials, 2009, 117(1/2): 213-219.
3 㐀䃧 [11] ZENG L, PAN Y, TIAN Y, et al. Doxorubicin-loaded NaYF 4:Yb/Tm-TiO 2
inorganic photosensitizers for NIR-triggered photodynamic therapy
喍1喎ݣิγ̭کᰶ䒪㢜㘪߈Ƞㆨ䓴⅔ࡃ⅏䚣 and enhanced chemotherapy in drug-resistant breast cancers[J].
Biomaterials, 2015, 57: 93-106.
≨ᕔহㆨ Fenton ࣺᏁᕔ⮱ NIR ٶ侞ߕ㏠ㆠٶ᩼ݯ [12] MAO Y (℈㞠), LIANG T H (ᶮ๖ࡻ), HU X F (㘎ᄼ䨸), et al.