Page 28 - 《精细化工》2023年第4期
P. 28
g714g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
ᄩ⢴喑हᬣݖ⩕ڣᒏ䆹जᣔ⮱х߬जВᄦ㏑㐡হ䛾 ഌڤᰶ㞜ສ⮱Ꮑ⩕ݺᮜȡⰛݺ喑䕇䓴䲆⩢㏧͊ឭᱜ
ᆋ䷄ㆿᵥภࡃȠノ⟣ࡃ喑䉸ε࣌ᱽ᫆͝ჹ⮱ᓛ㻯 ጟ㏼ߌౝݣิγ๔䛼॥∏ݯ喑䄒᪴ϸ㏺γ̭ψᰭ
㐀Ჱ喑ϻ㔹䓫ݝ䒰ສ⮱॥∏ᕔ㘪ȡⷠࡃ➖ฺव㏠ㆠ ڤА㶕ᕔ⮱䲆⩢㏧͊㏠ㆠ㏑㐡喑キ㺮䃕䃧γ䲆⩢㏧
㏑㐡Ό᭜పڲใࣾᆂ䒰ᔘ⮱॥∏ᱽ̭᫆喑ڤᰶ㔽 ͊ឭᱜౕ॥∏䶳ഌ͚⮱ࣾᆂ䓴⼸Ƞധ᱙࣌⤳হᏁ⩕
倅⍖ȠᑧᏓ๔ぶх߬喑ౕ倅⍖⣜ධ͚ڤᰶ䒰倅⮱Ꮑ ⣝⟣喑Вࣷ䲆⩢㏧͊㏠ㆠ㏑㐡⮱х߬喑ጹ᱈㘪ͧ
⩕Фթ喠็ᅯฺव㏠ㆠ㏑㐡݆᭜ౕВ̷ⵁ⾣⮱ധ ಸᓛ∏॥ᩣᱽ᫆⮱ݣิӈ̭ψᕊ䌜ȡ
̷喑䕇䓴䲆⩢㏧͊ឭᱜݣิ⮱ฺव㛉҉ͧ䒪Ҁ喑䦵 㮪♣䲆⩢㏧͊ឭᱜⰥᄦ⛌喑ౕ⩢ⷮ∏॥ᩣᱽ
ᄦ̺ह⮱Ꮑ⩕౧ᮜᄳڣ䔈㵹ᰶᱧ᪡व喑ϻ㔹䓫ݝ䒰 ᫆䲏ःᓄγ䒰ᔘ⮱䔈ᆂ喑ѳ㺮䓫ݝੳ͇ࡃⅡᎠ喑
ສ⮱䭲᩵喑ᄦλ㺮Ⅿ䒰倅⮱➦₷⣜ධᝃज䔈㵹 䰭㺮ϻВ̸܍䲏䔈㵹ⵁ⾣喟
➦₷ࡃჇݣȡ 喍1喎хࡃጒ㞧ࣷ࣌ᱽ᫆䔶᠖ȡ҉ͧڤᰶ➦₷⩕
䕁⮱ᱽ᫆喑キࢂ⮱䔪Ⅿጒ㞧キࡃज㘪̺᭜ᰭх㼐喑
㶕 2 ॥∏ᱽ᫆ࣷ॥∏ᕔ㘪ᄦ℁ ݣิ䓴⼸͚⮱̭ₒᏁВࡴᕔ㘪ͧᄩाȡₑใ喑
Table 2 Comparison of absorbing materials and absorbing
properties ౕ䲆⩢㏧͊⋟⮱䔶᠖̷䔅Ꮑٲܳⵁ⾣喑ᒀ॥ᩣፓც
ᬍ∂␎䋠㺮Ⅿᬣ喑Ꮑ䦵ᄦ̺ह䶾⃢⮱⩢ⷮ∏䔈㵹ⵁ
RL min/ 䶾⢴/ ࣇᏓ/ ॥ᩣፓ ࣯㔰
ᱽ᫆
dB GHz mm ც/GHz ᪴⡛ ⾣ȡ
Si NFs –57.8 14.7 1.90 5.50 [54] 喍2喎ࡴᱽ᫆䔯Ꮑᕔȡ॥∏ᱽ᫆Ꮑ⩕౧ᮜᎬ∈喑
SiCN NFs –53.1 11.0 1.95 5.60 [57] ̺ϲ⩕λ⩢ၽ䃫ิڲ䘕喑ౕᝤใฺᱯ⣜ධ͚ΌᰶⰥ
Mo 2C/C –60.4 15.0 1.50 4.80 [59] ڠᏁ⩕喑㔹㏠ㆠ㏑㐡॥∏ᱽ᫆䉕ౝᴁ䒜Ƞᱧᷝᕔ㘪
Fe 3O 4 NFs –17.2 6.2 5.50 ÿ [18] ጛȠᄬপⴚ喑䯫В䔯Ꮑ็अ⮱⣜ධȡ㼐۠䄒䬛䷅Ꮑ
CNF-Fe –67.5 16.6 1.30 17.40 [23] 㔰㭾ᐭࣾᱽ᫆⮱็ߌ㘪ᕔ喑ᝃ䔶᠖䔯Ꮑᕔ䒰ᑧ⮱ധ
CuNi/CNFs –55.1 13.4 3.00 7.50 [29]
Ꮒᱽ᫆ȡ
P-CNF/Fe –44.86 4.42 4.10 3.28 [30]
喍3喎᠀ცᰶ᩵॥ᩣፓცȡฺवᱽ᫆⮱ᰶࣺ᩵ᄱ
Fe-C NFs –44.0 4.20 3.00 11.00 [31]
ᢌ㕄㺳Ⰳ⮱㠰డ䒰⾱喑㔹ᰭҠࣺᄱᢌ㕄⮱⾮ܧ㶕
C/Co NFs –58.8 ÿ 3.50 12.90 [33]
⣝Ꭳ̺㘪Ⴙڕ㶕ᄦ⩢ⷮ∏⮱॥ᩣᕔ㘪喑́๔䘕ܳ
F-PVDF/ –21.5 16.8 2.50 5.90 [49]
Fe 3O 4@PPy0.075NFs ᱽ᫆็ౕ 6~18 GHz ڲ᩵᭫㦄喑ѳᄦλѻ䶾㠰డ
HCF@CZ-CNTs –53.5 7.8 2.00 8.02 [43] 喍1~2 GHz喎݆Ⱕᄦ⁍㑧ȡ
CNF-PCNT –44.5 10.7 2.00 7.00 [44]
࣯㔰᪴⡛喟
Co 2Y/C –98.2 16.0 2.00 15.90 [62]
∕喟ĄÿąА㶕ᬍᢛȡ [1] CAI R, ZHENG W, YANG P G , et al. Microstructure, electromagnetic
properties, and microwave absorption mechanism of
SiO 2-MnO-Al 2O 3 based manganese ore powder for electromagnetic
3 㐀䄚̻ᆂ᱈ protection[J]. Molecules, 2022, 27(12): 3758.
[2] KOU X, ZHAO Y P, XU L J, et al. Controlled fabrication of
̺हㆨಸ⮱॥∏ᱽ᫆ڤᰶ̺ह⮱॥∏➦◦喑Ҹ core-shell Ȗ-Fe 2O 3@C-reduced graphene oxide composites with
ຯ喟䧮⅔Ҁᱽ᫆ᝃⷮᕔ䛾ᆋजВ䕇䓴ⷮᢌ㕄ᱧݣᲒ tunable interfacial structure for highly efficient microwave
absorption [J]. J Colloid Interface Sci, 2022, 615: 685-696.
॥ᩣ⩢ⷮ∏喑ڤᰶ䒰ᑧ⮱ࣺᄱᢌ㕄ᑧᏓ喑ѳ⩞λ䉌 [3] LI S M, HUANG H, WU S B, et al. Study on microwave absorption
䒪䛼๔Ƞᭀ㙽㮭ぶ㑧◦䭽ݣڣ䭲Ꮑ⩕喠ⷠധᱽ᫆ performance enhancement of metamaterial/honeycomb sandwich
݆ڤᰶ䉕䒨ȠᲒ⎽Ꭼ∈Ƞхᐯ⮱ࡃ႓⽠Ⴧᕔহϸ⩢ composites in the low frequency band[J]. Polymers, 2022, 14(7): 1424.
[4] LIU W, DUAN P T, DING Y, et al. One-dimensional MOF-derived
፥ぶ➦◦ᑂ䊤γϧЙ⮱Ꭼ∈ڠ∕喑ѳΌႅౕ䭨ោ magnetic composites for efficient microwave absorption at ultralow
ࡦ䙺䒰ጛ喑Ҭᓄ㏜ⷠധᱽ᫆⮱ࣺᄱᢌ㕄ᑧᏓ䒰ᑞぶ thickness through controllable hydrogen reduction[J]. Dalton Trans,
䬛䷅ȡᕨ喑ڤᰶࢂ̭ᢌ㕄ᱧݣ⮱ᱽ᫆ᬍ∂हᬣ␎ 2022, 51(17): 6597-6606.
[5] ZENG Z H, JIANG F Z, YUE Y, et al. Flexible and ultrathin
䋠ಸᱽ᫆Ą㪱Ƞ䒨ȠცȠᑧą⮱㺮Ⅿ喑गᰶ䕇䓴 waterproof cellular membranes based on high-conjunction metal-
ऱㆨಸ॥∏ᱽ᫆䬡⮱ࡼह᩵Ꮑ喑⣝х߬ο㶒 wrapped polymer nanofibers for electromagnetic interference shielding[J].
㘪⣝॥∏ᱽ᫆ᕔ㘪⮱ࡴȡ Adv Mater, 2020, 32(19): 1908496.
[6] ZHAO S C, YAN L L, TIAN X D, et al. Flexible design of gradient
䛴⩕䲆⩢㏧͊ឭᱜ᭜ⵁݣѻჳᏓȠც䶾ፓȠᑧ multilayer nanofilms coated on carbon nanofibers by atomic layer
॥ᩣ㘪߈⮱倅ᕔ㘪⩢ⷮ∏॥ᩣᱽ᫆⮱䕁ᒱȡ䕇䓴 deposition for enhanced microwave absorption performance[J]. Nano
Research, 2017, 11(1): 530-541.
䲆⩢㏧͊ݣิ⮱ฺव㏠ㆠᱽ̺᫆ϲजВ䄰᪡ᓛ∏॥
[7] QU B, ZHU C L, LI C Y, et al. Coupling hollow Fe 3O 4-Fe nanoparticles
ᩣᕔ㘪喑Ꭳ́ݣิ䓴⼸キӬ喑䔶᠖ᕔ็喑ౕ MA 䶳 with graphene sheets for high-performance electromagnetic wave