Page 29 - 《精细化工》2023年第4期
P. 29

す 4 ᱌                       䘚   ౠ喑ぶ:  䲆⩢㏧͊㏠ㆠ㏑㐡ౕ॥∏ᱽ͚᫆⮱Ꮑ⩕                                  g715g


                 absorbing material[J]. ACS Applied Materials & Interfaces, 2016, 8   nanoparticles[J]. ACS Appl Mater Interfaces, 2021, 13(30): 36182-
                 (6): 3730-3735.                                   36189.
            [8]   WANG X H (⢸ૉ㟞), LIU  T (݅⋈), HUANG L (叱ͪ),  et al.   [25]  HE W L (҂࢘᳄). Study on microwave absorbing  properties of
                 Research progress on electromagnetic shielding and  absorbing   magnetic carbon fiber composites[D]. Nanjing: Nanjing  University
                 materials of composite nanofibers prepared by electrospinning [J].   (ࢄϙ๔႓), 2011.
                 Acta Materiae Compositae Sinica (ฺवᱽ᫆႓្), 2023,40:1-13.   [26]  JAGADAL E, ZHOU X, BLAISDEL L,  et al. Carbon  nanofibers
            [9]   ZENG Z, XU D  W, LI M,  et al. Confined  transformation of   (CNFs) supported cobalt-nickel sulfide (CoNi 2S 4) nanoparticles
                 trifunctional Co 2(OH) 2CO 3 nanosheet assemblies into hollow porous   hybrid anode for high performance lithium-ion capacitor[J]. Sci Rep,
                 Co@N-doped carbon spheres for efficient microwave absorption[J]. J   2018, 8(1):1602.
                 Colloid Interface Sci, 2022, 622: 625-636.    [27]  WANG P, CHENG L F, ZHANG Y  N,  et al. Flexible  SiC/Si 3N 4
            [10]  WANG Y Q (⢸㞠⥡). Preparation and microwave  absorption   composite nanofibers with in situ embedded  graphite for highly
                 properties of MOFs carbon matrix composites[D].  Shanghai:   efficient electromagnetic wave absorption[J]. ACS Appl Mater
                 Shanghai University (̷⊤๔႓), 2020.                 Interfaces, 2017, 9(34): 28844-28858.
            [11]  LIU P J, VINCENT M H N, YAO Z J, et al. Microwave absorption   [28]  PAN H X, YIN  X W, XUE J  M,  et al.  In-situ synthesis of
                 properties of double-layer  absorbers based on Co 0.2Ni 0.4Zn 0.4Fe 2O 4   hierarchically porous and  polycrystalline carbon  nanowires with
                 ferrite and reduced graphene oxide composites[J]. Journal of Alloys   excellent microwave absorption performance[J]. Carbon, 2016, 107:
                 and Compounds, 2017, 701: 841-849.                36-45.
            [12]  LIU Y (݅ण). Preparation and microwave absorption properties of   [29]  WEI Y P, ZHONG K Y, JIANG T T,  et al. Gumdrop-cake-like
                 carbon nanotube/metal oxide composites[D]. Huainan: Anhui University   CuNi/C nanofibers with tunable microstructure for  microwave
                 of Science and Technology (Ⴖᓪ⤳ጒ๔႓), 2019.         absorbing application[J]. Ceramics  International,  2020, 46(8):
            [13]  LU Z X, REN F, GUO Z Z, et al. Facile construction of core-shell   11406-11415.
                 Carbon@CoNiO 2 derived from yeast for broadband and high-efficiency   [30]  ZUO X D, XU  P,  ZHANG  C Y,  et al. Porous magnetic carbon
                 microwave absorption[J]. J Colloid Interface Sci, 2022, 625: 415-424.   nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave
            [14]  ZHANG  X M, JI G B, LIU W,  et al. Thermal  conversion  of an   absorption synthesized by electrospinning[J]. Ceramics International,
                 Fe 3O 4@Metal-organic framework: A new  method for an efficient   2019, 45(4): 4474-4481.
                 Fe-Co/nanoporous carbon microwave absorbing material[J]. Nanoscale,   [31]  WANG T, WANG H D, CHI X,  et al. Synthesis and  microwave
                 2015, 7(30): 12932-12942.                         absorption  properties of Fe-C nanofibers by electrospinning with
            [15]  ZHU H H, LIANG J, CHEN J F,  et al. Rational construction  of   disperse Fe nanoparticles parceled by carbon[J]. Carbon, 2014, 74:
                 yolk-shell  structured  Co 3Fe 7/FeO@carbon  composite  and  312-318.
                 optimization of its microwave absorption[J]. J Colloid Interface Sci,   [32]  KANG Z, GU Y S, YAN X Q, et al. Enhanced photoelectrochemical
                 2022, 626: 775-786.                               property of ZnO nanorods array synthesized on  reduced graphene
            [16]  YANG Z Q, YOU  W B, XIONG X H,  et al. Morphology-evolved   oxide for self-powered biosensing  application[J]. Biosensors and
                 succulent-like FeCo microarchitectures with magnetic configuration   Bioelectronics, 2015, 64: 499-504.
                 regulation  for enhanced microwave absorption[J]. ACS  Applied   [33]  MENG X F, DONG S H. Design and construction  of lightweight
                 Materials & Interfaces, 2022, 14 (28): 32369-32378.   C/Co heterojunction nanofibres for enhanced microwave absorption
            [17]  ZENG X J, ZHU L Y, YANG B, et al. Necklace-like Fe 3O 4 nanoparticle   performance[J]. Journal of Alloys and Compounds, 2019, (11): 810.
                 beads on carbon nanotube threads for microwave absorption and   [34]  LIU H H, LI Y J, YUAN M W, et al. In situ preparation of cobalt
                 supercapacitors[J]. Materials & Design, 2020, 189: 108517.   nanoparticles decorated in N-doped carbon nanofibers as  excellent
            [18]  HAN R, LI W, PAN W W, et al. 1D magnetic materials of Fe 3O 4 and   electromagnetic wave absorbers[J]. ACS Appl Mater Interfaces,
                 Fe with high performance of  microwave absorption fabricated by   2018, 10 (26): 22591-22601.
                 electrospinning method[J]. Scientific Reports, 2014, 4(1): 7493.   [35]  CHEN Z L,  WU  R B, LIU Y,  et al. Ultrafine Co nanoparticles
            [19]  FARHAT O F, HALIM M M, NASER M, et al. ZnO nanofiber (NFs)   encapsulated in  carbon-nanotubes-grafted graphene  sheets as
                 growth from ZnO nanowires (NWs) by controlling growth temperature on   advanced electrocatalysts for the hydrogen evolution reaction[J]. Adv
                 flexible teflon substrate by  CBD  technique for  UV photodetector[J].   Mater, 2018, 30(30): e1802011.
                 Superlattices and Microstructures, 2016, 100: 1120-1127.   [36]  MA M L, BI Y X, TONG Z Y, et al. Recent progress of MOF-derived
            [20]  ALI A, AMIN A, FOAD G, et al. Facile synthesis and simulation of   porous carbon materials for microwave absorption[J]. RSC Adv,
                 MnO 2 nanoflakes  on  vertically aligned carbon  nanotubes as a   2021, 11(27): 16572-16591.
                 high-performance electrode for Li-ion battery and supercapacitor[J].   [37]  LV Y  Y, WANG  Y T, LI  H L,  et al. MOF-derived porous Co/C
                 Electrochimica Acta, 2021, 390: 138826.           nanocomposites with excellent electromagnetic wave absorption
            [21]  SABA K, HOSSEIN M C, ZEYNEP O, et al. Synthesis characterization   properties[J]. ACS Appl Mater Interfaces, 2015, 7(24): 13604-13611.
                 of SnO 2  nanofibers (NFs) and application  of  high-performing   [38]  SAMADI A, HOSSEINI  S M, MOHSENI M. Investigation  of  the
                 photodetectors based on SnO 2 NFs/n-Si heterostructure[J]. Sensors and   electromagnetic microwave absorption and piezoelectric properties of
                 Actuators A: Physical, 2022, 342: 113631.         electrospun Fe 3O 4-GO/PVDF hybrid nanocomposites[J]. Organic
            [22]  HUANG W B, TONG Z  Y, WANG R Z,  et al. A  review on   Electronics, 2018, 59: 149-155.
                 electrospinning nanofibers in the field of  microwave  absorption[J].   [39]  FENG W, WANG Y M, CHEN J C,  et al. Microwave absorbing
                 Ceramics International, 2020, 46 (17): 26441-26453.   property optimization of starlike ZnO/reduced graphene oxide doped
            [23]  XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers   by ZnO nanocrystal composites[J]. Phys Chem Chem Phys, 2017, 19(22):
                 containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and   14596-14605.
                 high-performance electromagnetic wave absorbers[J]. J Mater Chem   [40]  GUPTA  S, TAI N H. Carbon materials and  their composites  for
                 A, 2014, 2(40): 16905-16914.                      electromagnetic interference shielding effectiveness in  X-band[J].
            [24]  CHEN J  B, ZHENG J, HUANG Q Q,  et al. Enhanced  microwave   Carbon, 2019, 152: 159-187.
                 absorbing ability of carbon  fibers with embedded FeCo/CoFe 2O 4   [41]  RAHMAN A,  CHUNG M. Synthesis of PVDF-graphene
   24   25   26   27   28   29   30   31   32   33   34