Page 29 - 《精细化工》2023年第4期
P. 29
す 4 䘚 ౠ喑ぶ: 䲆⩢㏧͊㏠ㆠ㏑㐡ౕ॥∏ᱽ͚᫆⮱Ꮑ⩕ g715g
absorbing material[J]. ACS Applied Materials & Interfaces, 2016, 8 nanoparticles[J]. ACS Appl Mater Interfaces, 2021, 13(30): 36182-
(6): 3730-3735. 36189.
[8] WANG X H (⢸ૉ㟞), LIU T (݅⋈), HUANG L (叱ͪ), et al. [25] HE W L (҂࢘᳄). Study on microwave absorbing properties of
Research progress on electromagnetic shielding and absorbing magnetic carbon fiber composites[D]. Nanjing: Nanjing University
materials of composite nanofibers prepared by electrospinning [J]. (ࢄϙ๔႓), 2011.
Acta Materiae Compositae Sinica (ฺवᱽ᫆႓្), 2023,40:1-13. [26] JAGADAL E, ZHOU X, BLAISDEL L, et al. Carbon nanofibers
[9] ZENG Z, XU D W, LI M, et al. Confined transformation of (CNFs) supported cobalt-nickel sulfide (CoNi 2S 4) nanoparticles
trifunctional Co 2(OH) 2CO 3 nanosheet assemblies into hollow porous hybrid anode for high performance lithium-ion capacitor[J]. Sci Rep,
Co@N-doped carbon spheres for efficient microwave absorption[J]. J 2018, 8(1):1602.
Colloid Interface Sci, 2022, 622: 625-636. [27] WANG P, CHENG L F, ZHANG Y N, et al. Flexible SiC/Si 3N 4
[10] WANG Y Q (⢸㞠⥡). Preparation and microwave absorption composite nanofibers with in situ embedded graphite for highly
properties of MOFs carbon matrix composites[D]. Shanghai: efficient electromagnetic wave absorption[J]. ACS Appl Mater
Shanghai University (̷⊤๔႓), 2020. Interfaces, 2017, 9(34): 28844-28858.
[11] LIU P J, VINCENT M H N, YAO Z J, et al. Microwave absorption [28] PAN H X, YIN X W, XUE J M, et al. In-situ synthesis of
properties of double-layer absorbers based on Co 0.2Ni 0.4Zn 0.4Fe 2O 4 hierarchically porous and polycrystalline carbon nanowires with
ferrite and reduced graphene oxide composites[J]. Journal of Alloys excellent microwave absorption performance[J]. Carbon, 2016, 107:
and Compounds, 2017, 701: 841-849. 36-45.
[12] LIU Y (݅ण). Preparation and microwave absorption properties of [29] WEI Y P, ZHONG K Y, JIANG T T, et al. Gumdrop-cake-like
carbon nanotube/metal oxide composites[D]. Huainan: Anhui University CuNi/C nanofibers with tunable microstructure for microwave
of Science and Technology (Ⴖᓪ⤳ጒ๔႓), 2019. absorbing application[J]. Ceramics International, 2020, 46(8):
[13] LU Z X, REN F, GUO Z Z, et al. Facile construction of core-shell 11406-11415.
Carbon@CoNiO 2 derived from yeast for broadband and high-efficiency [30] ZUO X D, XU P, ZHANG C Y, et al. Porous magnetic carbon
microwave absorption[J]. J Colloid Interface Sci, 2022, 625: 415-424. nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave
[14] ZHANG X M, JI G B, LIU W, et al. Thermal conversion of an absorption synthesized by electrospinning[J]. Ceramics International,
Fe 3O 4@Metal-organic framework: A new method for an efficient 2019, 45(4): 4474-4481.
Fe-Co/nanoporous carbon microwave absorbing material[J]. Nanoscale, [31] WANG T, WANG H D, CHI X, et al. Synthesis and microwave
2015, 7(30): 12932-12942. absorption properties of Fe-C nanofibers by electrospinning with
[15] ZHU H H, LIANG J, CHEN J F, et al. Rational construction of disperse Fe nanoparticles parceled by carbon[J]. Carbon, 2014, 74:
yolk-shell structured Co 3Fe 7/FeO@carbon composite and 312-318.
optimization of its microwave absorption[J]. J Colloid Interface Sci, [32] KANG Z, GU Y S, YAN X Q, et al. Enhanced photoelectrochemical
2022, 626: 775-786. property of ZnO nanorods array synthesized on reduced graphene
[16] YANG Z Q, YOU W B, XIONG X H, et al. Morphology-evolved oxide for self-powered biosensing application[J]. Biosensors and
succulent-like FeCo microarchitectures with magnetic configuration Bioelectronics, 2015, 64: 499-504.
regulation for enhanced microwave absorption[J]. ACS Applied [33] MENG X F, DONG S H. Design and construction of lightweight
Materials & Interfaces, 2022, 14 (28): 32369-32378. C/Co heterojunction nanofibres for enhanced microwave absorption
[17] ZENG X J, ZHU L Y, YANG B, et al. Necklace-like Fe 3O 4 nanoparticle performance[J]. Journal of Alloys and Compounds, 2019, (11): 810.
beads on carbon nanotube threads for microwave absorption and [34] LIU H H, LI Y J, YUAN M W, et al. In situ preparation of cobalt
supercapacitors[J]. Materials & Design, 2020, 189: 108517. nanoparticles decorated in N-doped carbon nanofibers as excellent
[18] HAN R, LI W, PAN W W, et al. 1D magnetic materials of Fe 3O 4 and electromagnetic wave absorbers[J]. ACS Appl Mater Interfaces,
Fe with high performance of microwave absorption fabricated by 2018, 10 (26): 22591-22601.
electrospinning method[J]. Scientific Reports, 2014, 4(1): 7493. [35] CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co nanoparticles
[19] FARHAT O F, HALIM M M, NASER M, et al. ZnO nanofiber (NFs) encapsulated in carbon-nanotubes-grafted graphene sheets as
growth from ZnO nanowires (NWs) by controlling growth temperature on advanced electrocatalysts for the hydrogen evolution reaction[J]. Adv
flexible teflon substrate by CBD technique for UV photodetector[J]. Mater, 2018, 30(30): e1802011.
Superlattices and Microstructures, 2016, 100: 1120-1127. [36] MA M L, BI Y X, TONG Z Y, et al. Recent progress of MOF-derived
[20] ALI A, AMIN A, FOAD G, et al. Facile synthesis and simulation of porous carbon materials for microwave absorption[J]. RSC Adv,
MnO 2 nanoflakes on vertically aligned carbon nanotubes as a 2021, 11(27): 16572-16591.
high-performance electrode for Li-ion battery and supercapacitor[J]. [37] LV Y Y, WANG Y T, LI H L, et al. MOF-derived porous Co/C
Electrochimica Acta, 2021, 390: 138826. nanocomposites with excellent electromagnetic wave absorption
[21] SABA K, HOSSEIN M C, ZEYNEP O, et al. Synthesis characterization properties[J]. ACS Appl Mater Interfaces, 2015, 7(24): 13604-13611.
of SnO 2 nanofibers (NFs) and application of high-performing [38] SAMADI A, HOSSEINI S M, MOHSENI M. Investigation of the
photodetectors based on SnO 2 NFs/n-Si heterostructure[J]. Sensors and electromagnetic microwave absorption and piezoelectric properties of
Actuators A: Physical, 2022, 342: 113631. electrospun Fe 3O 4-GO/PVDF hybrid nanocomposites[J]. Organic
[22] HUANG W B, TONG Z Y, WANG R Z, et al. A review on Electronics, 2018, 59: 149-155.
electrospinning nanofibers in the field of microwave absorption[J]. [39] FENG W, WANG Y M, CHEN J C, et al. Microwave absorbing
Ceramics International, 2020, 46 (17): 26441-26453. property optimization of starlike ZnO/reduced graphene oxide doped
[23] XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers by ZnO nanocrystal composites[J]. Phys Chem Chem Phys, 2017, 19(22):
containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and 14596-14605.
high-performance electromagnetic wave absorbers[J]. J Mater Chem [40] GUPTA S, TAI N H. Carbon materials and their composites for
A, 2014, 2(40): 16905-16914. electromagnetic interference shielding effectiveness in X-band[J].
[24] CHEN J B, ZHENG J, HUANG Q Q, et al. Enhanced microwave Carbon, 2019, 152: 159-187.
absorbing ability of carbon fibers with embedded FeCo/CoFe 2O 4 [41] RAHMAN A, CHUNG M. Synthesis of PVDF-graphene