Page 30 - 《精细化工》2023年第4期
P. 30

g716g                             ㇫㏳ࡃጒ   FINE CHEMICALS                                 す 40 ࢤ

                 nanocomposites and their properties[J]. Journal of Alloys and   technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.
                 Compounds, 2013, 581: 724-730.                [53]  WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis,
            [42]  KONG L, YIN  X  W, ZHANG  Y J,  et al. Electromagnetic wave   properties and potential applications of  SiC nanomaterials[J].
                 absorption  properties of reduced graphene oxide modified by   Progress in Materials Science, 2015, 72: 1-60.
                 maghemite colloidal nanoparticle clusters[J]. The Journal of Physical   [54]  WANG  P, CHENG L  F,  ZHANG Y N,  et al. Synthesis of SiC
                 Chemistry C, 2013, 117(38): 19701-19711.          nanofibers with superior electromagnetic wave absorption performance
            [43]  YANG  M  L, YUAN Y,  LI Y,  et al. Dramatically enhanced   by electrospinning[J]. Journal of Alloys and Compounds, 2017, 716:
                 electromagnetic wave absorption  of hierarchical CNT/Co/C fiber   306-320.
                 derived from cotton and metal-organic-framework[J]. Carbon, 2020,   [55]  ZHU B, CUI Y, LV D F, et al. Synthesis and electromagnetic wave
                 161: 517-527.                                     absorption properties of peanut shell-like SiC fibers[J]. Materials
            [44]  ZHANG T,  XIAO B,  ZHOU P Y,  et al. Porous-carbon-nanotube   Letters, 2020, 263: 127288.
                 decorated carbon  nanofibers with effective microwave  absorption   [56]  HOU  Y, CHENG  L F, ZHANG Y N,  et al. SiC nanofiber  mat: A
                 properties[J]. Nanotechnology, 2017, 28(35): 355708.   broad-band microwave absorber, and the alignment effect[J]. ACS
            [45]  WATTS P C P, HSU W K, BARNES A, et al. High permittivity from   Appl Mater Interfaces, 2017, 9(49): 43072-43080.
                 defective multiwalled carbon nanotubes in the X-band[J]. Advanced   [57]  WANG P, CHENG L,  ZHANG  L T. Lightweight, flexible SiCN
                 Materials 2003, 15(78): 600-603.                  ceramic nanowires applied as effective microwave absorbers in high
            [46]  ZHANG  Z W, CAI Z H, WANG Z Y,  et al.  A review on metal-   frequency[J]. Chemical Engineering Journal, 2018, 338: 248-260.
                 organic framework-derived porous carbon-based novel microwave   [58]  ZHANG Y, HUANG Y, ZHANG T F, et al. Broad band and tunable
                 absorption materials[J]. Nanomicro Lett, 2021, 13(1): 56.   high-performance microwave absorption of an ultralight and highly
            [47]  HAN C, ZHANG M, CAO W Q, et al. Electrospinning and in-situ   compressible graphene foam[J]. Adv Mater, 2015, 27(12): 2049-2053.
                 hierarchical thermal treatment to tailor C-NiCo 2O 4 nanofibers for   [59]  WANG Y H, LI C L, HAN X J, et al. Ultrasmall Mo 2C nanoparticle-
                 tunable microwave absorption[J]. Carbon, 2021, 171: 953-962.   decorated carbon polyhedrons for enhanced microwave absorption[J].
            [48]  ZHAO J, LI M,  GAO X G.  Construction of SnO 2 nanoparticle   ACS Applied Nano Materials, 2018, 1(9): 5366-5376.
                 cluster@PANI core-shell microspheres for efficient X-band electromagnetic   [60]  DU M M, YAO Z J, ZHOU J T, et al. Design of efficient microwave
                 wave absorption[J]. Journal of Alloys and Compounds, 2022,   absorbers based on multi-layered polyaniline nanofibers and polyaniline
                 915:165439.                                       nanofibers/Li 0.35Zn 0.3Fe 2.35O 4 nanocomposite[J]. Synthetic Metals, 2017,
            [49]  LI Y N,  ZHAO  Y, LU X  Y,  et al. Self-healing superhydrophobic   223: 49-57.
                 polyvinylidene fluoride/Fe 3O 4@polypyrrole fiber with core-sheath   [61]  HOU Z  H, XIANG J, ZHANG X K,  et al. Microwave absorption
                 structures for superior microwave absorption[J]. Nano  Research,   properties of single- and double-layer absorbers based on electrospun
                 2016, 9(7): 2034-2045.                            nickel-zinc spinel ferrite and carbon nanofibers[J]. Journal of
            [50]  YANG M, YANG Z J, LV C, et al. Electrospun bifunctional Mxene-   Materials Science: Materials in Electronics,2018,29(14): 12258-12268.
                 based electronic skins with high performance electromagnetic   [62]  GUAN G G, ZHANG K Y, GONG L, et al. Electromagnetic wave
                 shielding and pressure sensing[J]. Composites Science and Technology,   absorption enhancement of double-layer structural absorbers based
                 2022, 221:109313.                                 on carbon nanofibers and hollow Co 2Y hexaferrite  microfibers[J].
            [51]  SIGMUND W, YUH W J, PARK H,  et al. Processing  and structure   Alloys and Compounds, 2020, 814: 152302.
                 relationships in electrospinning of ceramic fiber systems[J]. Journal of   [63]  XIONG J, LI A L, LIU Y, et al. Scalable and hierarchically designed
                 the American Ceramic Society, 2006, 89(2): 395-407.   MOF fabrics by netting MOFs into  nanofiber networks for high-
            [52]  MORKO H, STRITE S, GAO G B, et al. Large-band-gap SiC,  ĕ~Ė   performance solar-driven water purification[J]. Journal of Materials
                 nitride, and  Ĕ ~ Ę  ZnSe-based semiconductor device   Chemistry A, 2021, 9(37): 21005-21012.




            喍̷ᣒす 705 䶢喎                                            porous nanosheet by coupling CeO 2 for efficient electrochemical
            [41]  BALAJI R, KANNAN B S, LAKSHMI J,  et al. An alternative   overall water splitting at high current densities[J]. Advanced Functional
                 approach to selective sea water oxidation for hydrogen production[J].   Materials, 2020, 30: 1910596.
                 Electrochemistry Communications, 2009, 11: 1700-1702.   [45]  LI Y B, ZHAO C. Enhancing water oxidation catalysis on a synergistic
            [42]  OBATA K, TAKANABE K. A permselective CeO x coating to improve   phosphorylated NiFe hydroxide by adjusting catalyst wettability[J].
                 the stability of oxygen evolution electrocatalysts[J]. Angewandte   ACS Catalysis, 2017, 7: 2535-2541.
                 Chemie International Edition, 2018, 57: 1616-1620.   [46]  DASTAFKAN K,  MEYER  Q, CHEN X J,  et al. Efficient oxygen
            [43]  HUANG Y C, HU L,  LIU R,  et al.  Nitrogen treatment generates   evolution and gas  bubble release achieved by a low gas bubble
                 tunable nanohybridization of Ni 5P 4  nanosheets with nickel hydr   adhesive iron nickel vanadate  electrocatalyst[J]. Small,  2020, 16:
                 (oxy)oxides for efficient hydrogen production in alkaline, seawater   2002412.
                 and acidic media[J]. Applied Catalysis B: Environmental, 2019, 251:   [47]  LUO D, ZHANG F H, DING F Z,  et al. Interactions between
                 181-194.                                          amphiphilic Janus nanosheets and a nonionic polymer in aqueous and
            [44]  SUN H M, TIAN C Y, FAN G L, et al. Boosting activity on Co 4N   biphasic systems[J]. Soft Matter, 2019, 15: 7472-7478.
   25   26   27   28   29   30   31   32   33   34   35