Page 30 - 《精细化工》2023年第4期
P. 30
g716g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
nanocomposites and their properties[J]. Journal of Alloys and technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.
Compounds, 2013, 581: 724-730. [53] WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis,
[42] KONG L, YIN X W, ZHANG Y J, et al. Electromagnetic wave properties and potential applications of SiC nanomaterials[J].
absorption properties of reduced graphene oxide modified by Progress in Materials Science, 2015, 72: 1-60.
maghemite colloidal nanoparticle clusters[J]. The Journal of Physical [54] WANG P, CHENG L F, ZHANG Y N, et al. Synthesis of SiC
Chemistry C, 2013, 117(38): 19701-19711. nanofibers with superior electromagnetic wave absorption performance
[43] YANG M L, YUAN Y, LI Y, et al. Dramatically enhanced by electrospinning[J]. Journal of Alloys and Compounds, 2017, 716:
electromagnetic wave absorption of hierarchical CNT/Co/C fiber 306-320.
derived from cotton and metal-organic-framework[J]. Carbon, 2020, [55] ZHU B, CUI Y, LV D F, et al. Synthesis and electromagnetic wave
161: 517-527. absorption properties of peanut shell-like SiC fibers[J]. Materials
[44] ZHANG T, XIAO B, ZHOU P Y, et al. Porous-carbon-nanotube Letters, 2020, 263: 127288.
decorated carbon nanofibers with effective microwave absorption [56] HOU Y, CHENG L F, ZHANG Y N, et al. SiC nanofiber mat: A
properties[J]. Nanotechnology, 2017, 28(35): 355708. broad-band microwave absorber, and the alignment effect[J]. ACS
[45] WATTS P C P, HSU W K, BARNES A, et al. High permittivity from Appl Mater Interfaces, 2017, 9(49): 43072-43080.
defective multiwalled carbon nanotubes in the X-band[J]. Advanced [57] WANG P, CHENG L, ZHANG L T. Lightweight, flexible SiCN
Materials 2003, 15(78): 600-603. ceramic nanowires applied as effective microwave absorbers in high
[46] ZHANG Z W, CAI Z H, WANG Z Y, et al. A review on metal- frequency[J]. Chemical Engineering Journal, 2018, 338: 248-260.
organic framework-derived porous carbon-based novel microwave [58] ZHANG Y, HUANG Y, ZHANG T F, et al. Broad band and tunable
absorption materials[J]. Nanomicro Lett, 2021, 13(1): 56. high-performance microwave absorption of an ultralight and highly
[47] HAN C, ZHANG M, CAO W Q, et al. Electrospinning and in-situ compressible graphene foam[J]. Adv Mater, 2015, 27(12): 2049-2053.
hierarchical thermal treatment to tailor C-NiCo 2O 4 nanofibers for [59] WANG Y H, LI C L, HAN X J, et al. Ultrasmall Mo 2C nanoparticle-
tunable microwave absorption[J]. Carbon, 2021, 171: 953-962. decorated carbon polyhedrons for enhanced microwave absorption[J].
[48] ZHAO J, LI M, GAO X G. Construction of SnO 2 nanoparticle ACS Applied Nano Materials, 2018, 1(9): 5366-5376.
cluster@PANI core-shell microspheres for efficient X-band electromagnetic [60] DU M M, YAO Z J, ZHOU J T, et al. Design of efficient microwave
wave absorption[J]. Journal of Alloys and Compounds, 2022, absorbers based on multi-layered polyaniline nanofibers and polyaniline
915:165439. nanofibers/Li 0.35Zn 0.3Fe 2.35O 4 nanocomposite[J]. Synthetic Metals, 2017,
[49] LI Y N, ZHAO Y, LU X Y, et al. Self-healing superhydrophobic 223: 49-57.
polyvinylidene fluoride/Fe 3O 4@polypyrrole fiber with core-sheath [61] HOU Z H, XIANG J, ZHANG X K, et al. Microwave absorption
structures for superior microwave absorption[J]. Nano Research, properties of single- and double-layer absorbers based on electrospun
2016, 9(7): 2034-2045. nickel-zinc spinel ferrite and carbon nanofibers[J]. Journal of
[50] YANG M, YANG Z J, LV C, et al. Electrospun bifunctional Mxene- Materials Science: Materials in Electronics,2018,29(14): 12258-12268.
based electronic skins with high performance electromagnetic [62] GUAN G G, ZHANG K Y, GONG L, et al. Electromagnetic wave
shielding and pressure sensing[J]. Composites Science and Technology, absorption enhancement of double-layer structural absorbers based
2022, 221:109313. on carbon nanofibers and hollow Co 2Y hexaferrite microfibers[J].
[51] SIGMUND W, YUH W J, PARK H, et al. Processing and structure Alloys and Compounds, 2020, 814: 152302.
relationships in electrospinning of ceramic fiber systems[J]. Journal of [63] XIONG J, LI A L, LIU Y, et al. Scalable and hierarchically designed
the American Ceramic Society, 2006, 89(2): 395-407. MOF fabrics by netting MOFs into nanofiber networks for high-
[52] MORKO H, STRITE S, GAO G B, et al. Large-band-gap SiC, ĕ~Ė performance solar-driven water purification[J]. Journal of Materials
nitride, and Ĕ ~ Ę ZnSe-based semiconductor device Chemistry A, 2021, 9(37): 21005-21012.
喍̷ᣒす 705 䶢喎 porous nanosheet by coupling CeO 2 for efficient electrochemical
[41] BALAJI R, KANNAN B S, LAKSHMI J, et al. An alternative overall water splitting at high current densities[J]. Advanced Functional
approach to selective sea water oxidation for hydrogen production[J]. Materials, 2020, 30: 1910596.
Electrochemistry Communications, 2009, 11: 1700-1702. [45] LI Y B, ZHAO C. Enhancing water oxidation catalysis on a synergistic
[42] OBATA K, TAKANABE K. A permselective CeO x coating to improve phosphorylated NiFe hydroxide by adjusting catalyst wettability[J].
the stability of oxygen evolution electrocatalysts[J]. Angewandte ACS Catalysis, 2017, 7: 2535-2541.
Chemie International Edition, 2018, 57: 1616-1620. [46] DASTAFKAN K, MEYER Q, CHEN X J, et al. Efficient oxygen
[43] HUANG Y C, HU L, LIU R, et al. Nitrogen treatment generates evolution and gas bubble release achieved by a low gas bubble
tunable nanohybridization of Ni 5P 4 nanosheets with nickel hydr adhesive iron nickel vanadate electrocatalyst[J]. Small, 2020, 16:
(oxy)oxides for efficient hydrogen production in alkaline, seawater 2002412.
and acidic media[J]. Applied Catalysis B: Environmental, 2019, 251: [47] LUO D, ZHANG F H, DING F Z, et al. Interactions between
181-194. amphiphilic Janus nanosheets and a nonionic polymer in aqueous and
[44] SUN H M, TIAN C Y, FAN G L, et al. Boosting activity on Co 4N biphasic systems[J]. Soft Matter, 2019, 15: 7472-7478.