Page 67 - 《精细化工》2023年第4期
P. 67

す 4 ᱌                   ̮   Ϋ  喑  ぶ  : ȕ-͆⅕䚥⮱⩌➖А䅏䓴⼸ࣷ⩌➖∂ݣิⵁ⾣䔈ᆂ                            g753g


                 engineering for fermentative production of ȕ-alanine in Escherichia   [35]  CHEN  X  L  (䭵฼᳄).  Identification  of  L-aspertate  decarboxylase
                 coli[J].  Applied  Microbiology  and  Biotechnology,  2020,  104(6):   encoding genes and analysis of enzyme function[D]. Wuxi: Jiangnan
                 2545-2559.                                        University (↌ࢄ๔႓), 2017.
            [16]  MATTHEWS  J  J,  ARTIOLI  G  G,  TURNER  M  D,  et al.  The   [36]  MO Q (㣘㟦). Molecular mechanism of the catalytic inactivation of
                 physiological roles of carnosine and ȕ-alanine in exercising human   L-aspartate alpha-decarboxylase[D]. Wuxi:  Jiangnan University  (↌
                 skeletal  muscle[J].  Medicine  Science  in  Sports  Exercise,  2019,   ࢄ๔႓), 2019.
                 51(10): 2098-2108.                            [37]  FENG  Z,  ZHANG  J,  CHEN  G,  et al.  Extracellular  expression  of
            [17]  TAYLAN T, ALEKSEI G, ZOIE S, et al. Lysine 2, 3-aminomutase   L-aspartate-Į-decarboxylase from Bacillus tequilensis and its application
                 and  a  newly  discovered  glutamate  2,  3-aminomutase  produce   in the biosynthesis of ȕ-alanine[J]. Applied Biochemistry Biotechnology,
                 ȕ-amino acids involved in salt tolerance in methanogenic archaea[J].   2019, 189(1): 273-283.
                 Biochemistry, 2022, 61(11): 1077-1090.        [38]  LIU Z, ZHENG W, YE W, et al. Characterization of cysteine sulfinic
            [18]  STEVEN  F  D,  AHMAD  A,  ANURADHA  K,  et al.  Clinical,   acid decarboxylase from Tribolium castaneum and its application in
                 biochemical, mitochondrial, and metabolomic aspects of methylmalonate   the production of ȕ-alanine[J]. Applied Microbiology Biotechnology,
                 semialdehyde  dehydrogenase  deficiency:  Report  of  a  fifth  case[J].   2019, 103(23): 9443-9453.
                 Molecular Genetics and Metabolism, 2020, 129(4): 272-277.   [39]  SHI Z X (ⴠ෋⻭). Structural constraints and properties of Corynebacterium
            [19]   PARTHASARATHY A, SAVKA M A, HUDSON A O. The synthesis   glutamicum  aspartate  decarboxylase,  PanD[D].  Wuxi:  Jiangnan
                 and role of ȕ-alanine in plants[J]. Frontiers in Plant Science, 2019, 10: 921.   University (↌ࢄ๔႓), 2013.
            [20]  PIAO  X,  WANG  L,  LIN  B,  et al.  Metabolic  engineering  of   [40]  SHEN  Y,  ZHAO  L,  LI  Y,  et al.  Synthesis  of  ȕ-alanine  from
                 Escherichia coli  for  production  of  L-aspartate  and  its  derivative   L-aspartate  using  L-aspartate-Į-decarboxylase  from  Corynebacterium
                 ȕ-alanine  with  high stoichiometric  yield[J].  Metabolic  Engineering,   glutamicum[J]. Biotechnology Letters, 2014, 36(8): 1681-1686.
                 2019, 54: 244-254.                            [41]  PEI W, ZHANG J, DENG S, et al. Molecular engineering of L-aspartate-
            [21]  LIANG S S (ᶮ༄༄). Metabolic engineering of Escherichia coli for   Į-decarboxylase  for  improved  activity  and  catalytic  stability[J].
                 the production of ȕ-alanine[D]. Wuxi: Jiangnan University (↌ࢄ๔  Applied Microbiology Biotechnology, 2017, 101(15): 6015-6021.
                 ႓), 2017.                                     [42]  QIAN Y, LU C, LIU J, et al. Engineering protonation conformation
            [22]  XU J, ZHOU L, YIN M, et al. Novel mode engineering for ȕ-alanine   of L-aspartate-Į-decarboxylase to relieve mechanism-based inactivation
                 production in Escherichia coli with the guide of adaptive laboratory   [J]. Biotechnology Bioengineering, 2020, 117(6): 1607-1614.
                 evolution[J]. Electronic Journal of Biotechnology, 2021, 9(3): 600.   [43]  YE W Q (ण᪴⥗), XUE L (㫈ᇇ), WANG C (⢸䊲), et al. Modification
            [23]  SONG  C  W,  LEE  J,  KO  Y  S,  et al.  Metabolic  engineering  of   of  aspartate  Į-decarboxylase  from  Tribolium castaneum  and  its
                 Escherichia coli  for  the  production  of  3-aminopropionic  acid[J].   application in producing ȕ-alanine[J]. Food and Fermentation Industries
                 Metabolic Engineering, 2015, 30: 121-129.         (丌৮̻ࣾ䚢ጒ͇), 2019, 45(11): 7-13.
            [24]  WANG P, ZHOU H Y, LI B, et al. Multiplex modification of Escherichia   [44]  WANG  C  ( ⢸䊲 ).  Thermostability  modification  of  L-aspartate
                 coli for enhanced ȕ-alanine biosynthesis through metabolic engineering   Į-decarboxylase  for  the  whole-cell  biocatalysis  of  ȕ-alanine[D].
                 [J]. Bioresource Technology, 2021, 342: 126050.   Wuxi: Jiangnan University (↌ࢄ๔႓), 2019.
            [25]  MIAO L, LI Y, ZHU T, et al. Metabolic engineering of methylotrophic   [45]  CHEN  H  (䭵㮦). Protein engineering of a L-aspartate-Į-decarboxylase
                 Pichia  pastoris  for  the  production  of  ȕ-alanine[J].  Bioresources   and its application in the ȕ-alanine production[D]. Hangzhou: Zhejiang
                 Bioprocessing, 2021, 8(1): 1-11.                  University of Technology (⊆↌ጒ͇๔႓), 2019.
            [26]  LI  Y,  WEI  H,  WANG  T,  et al.  Current  status  on  metabolic   [46]  YE  W  Q,  XUE  L,  WANG  C,  et al.  Characterization  of  enzymatic
                 engineering for the production of L-aspartate family amino acids and   properties  of  an  insect-derived  L-aspartate-Į-decarboxylase  variant
                 derivatives[J]. Bioresource Technology, 2017, 245: 1588-1602.   [J]. Food and Fermentation Industries, 2019, 45(19): 63-67.
            [27]  GONG J S (哇ߟᲫ), LI H (ᱻᕿ), LU Z M (䭳䰴卐), et al. Recent   [47]  TOMITA H, YOKOOJI Y, ISHIBASHI T, et al. An archaeal glutamate
                 progress in the application of nitrilase in the biocatalytic synthesis of   decarboxylase homolog functions as an aspartate decarboxylase and
                 pharmaceutical intermediates[J]. Progress in Chemistry (ࡃ႓䔈ᆂ),  is involved in ȕ-alanine and coenzyme A biosynthesis[J]. Journal of
                 2015, 27(4): 448-458.                             Bacteriology, 2014, 196(6): 1222-1230.
            [28]  JIAO  B  (♓ᴴ).  Engineering  of  nitrilase  and  its  application  in   [48]  QIAN Y, LIU J, SONG W, et al. Production of ȕ-alanine from fumaric
                 biosynthesis of (R)-mandelic acid[D]. Hangzhou: Zhejiang University   acid using a dual-enzyme cascade[J]. ChemCatChem, 2018, 10(21):
                 of Technology (⊆↌ጒ͇๔႓), 2016.                     4984-4991.
            [29]  LAING L Y (ᶮ⦽ᕎ), JIN S J (䛾ᄾۈ), XU J M (ᒽᐧໆ), et al.  [49]  GAO Y (倅Ⴔ), LIU Z M (͚݅㒻), LIU K (݅ٸ), et al. Biocatalytic
                 Isolation  and  identification  of  a  bacterial  strain  G20  capable  of   access to ȕ-alanine by a two-enzyme cascade synthesis[J]. Chinese
                 ȕ-aminopropionitrile  bioconversion  into  ȕ-alanine[J].  Food  and   Journal of Biotechnology (⩌➖ጒ⼸႓្), 2017, 33(5): 875-879.
                 Fermentation Industries (丌৮̻ࣾ䚢ጒ͇), 2008, 34(4): 11-15.   [50]  OTTENHOF H H, ASHURST J L, WHITNEY H M, et al. Organisation
            [30]  HAN C (䴖䊲), YAO P Y (༇ദళ), YUAN J (㶮ϙ), et al. Nitrile   of  the  pantothenate  (vitamin  B5)  biosynthesis  pathway  in  higher
                 hydrolase  catalyzed  the  hydrolysis  of  ȕ-aminopropionitrile  at  high   plants[J]. The Plant Journal, 2004, 37(1): 61-72.
                 concentrations  to  generate  ȕ-alanine  through  a  tandem  reaction   [51]  JIAO Q C (♓Ꮃ᝺), LIU J Z (݅౴ᔍ), WEI Y (偼Ⴔ), et al. The
                 strategy[C]//2014 Academic Annual Meeting of China Bioengineering   invention  relates  to  a  method  for  preparing  ȕ-alanine  by  multi-
                 Society  and  National  Biotechnology  Conference  (͚ప⩌➖ጒ⼸႓  enzyme coupling with maleic acid as raw material: CN107012180A
                 ч 2014 Ꭱ႓ᱜᎡчᯕڕప⩌➖ឭᱜ๔ч), 2014: 309-310.            [P]. 2017-08-04.
            [31]  HONG  M  (≗᩼).  Study  on  enzymatic  production  of  ȕ-alanine[D].   [52]  JIANG Y Y (㦸䓻䓻), QU G (ᰟ᜵), SUN Z T (ႆক䕇). Machine
                 Hangzhou: Zhejiang University of Technology (⊆↌ጒ͇๔႓), 2010.   learning- assisted enzyme directed evolution[J]. Journal of Biology
            [32]  FAN  H  Y  (㠰⊤∸).  Preparation  and  application  of  recombinant   (⩌➖႓ᱯᔄ), 2020, 37(4): 1-11.
                 Escherichia coli  L-aspartate-Į-decdarboxylase[D].  Shanghai:  East   [53]  QU G (ᰟ᜵), ZHU T (ᱞᒑ), JIANG Y Y (㦸䓻䓻), et al. Protein
                 China University of Science and Technology (ࡻ͉⤳ጒ๔႓), 2013.   engineering:  From  directed  evolution  to  computational  design[J].
            [33]  ZHAO L Z (䊢䔋ⱌ). Recombinant expression of the key gene in the   Chinese  Journal  of  Biotechnology  (⩌➖ጒ⼸႓្),  2019,  35(10):
                 enzymatic synthesis of ȕ-alanine and its transformation research[D].   1843-1856.
                 Wuxi: Jiangnan University (↌ࢄ๔႓), 2013.       [54]  LIU H (݅⁏). Fumaric acid production by fermentation of lignocellulose
            [34]  ZHANG  X  X  (ᑍ⑴⑴).  Cloning  and  expression  of  L-aspartate-Į-  and research of the gene expression mechanism regulated by nitrogen
                 decdarboxylase gene in C. crenatum[D]. Hangzhou: Zhejiang University   source[D]. Beijing: Beijing University of Chemical Technology (ࡄ
                 of Technology (⊆↌ጒ͇๔႓), 2008.                     ϙࡃጒ๔႓), 2019.
   62   63   64   65   66   67   68   69   70   71   72