Page 66 - 《精细化工》2023年第4期
P. 66

g752g                             ㇫㏳ࡃጒ        FINE CHEMICALS                            す 40 ࢤ

            䓴хࡃड़ߕၽȠᩦअധ఍ᠤ䉊᪝ぶ᫦ᐼ᣽倅ѻ᩵䚣                             ឭᱜ⮱䓲䕌ቈ䊤喑ϧጒ䃫䃎䚣㯸⮪䔽⌽᜽ͧ⣝჋                     [53] ȡ
            ⮱㶕䓫䛼喑ϻ㔹䬡ᣒ჋⣝̺हיࡃࣺᏁ⮱Ⱕοࡼहȡ                            ᫝ឭᱜ⮱Ꮑ⩕ͧⰥڠ䚣יࡃᱧݣ⮱㼐Ჽࣷϧጒ䃫䃎
                                                               ᩦ䕍᣽ӈ᫝⮱ឭᱜ᝸⃢ȡ䕇䓴䃎ツᱧ䒲ߖϧጒ䚣䃫
            4   㐀᲌䄚̻ᆂ᱈                                         䃎喑ᄳч⤳ᕔȠ倅᩵ౝ㼐۠ᒀݺⰥڠ䚣יࡃ᩵⢴ѻ

                                                               ࣷᭀ๞≨ぶ䬛䷅ȡᰭऻ喑㮪♣䚣∂ݣิ ȕ-͆⅕䚥⮱
                 ͚๛䉏㏼༁অчすΊ⁎ч䃛ᬻ⶛᣽ܧ喟㺮ិĄⷠ
                                                               ᜽᱙䒰ѻȠϔ䛼䒰倅喑ѳ᭜ࢂ䚣∂Ƞࣹ䚣∂Ƞ̶䚣
            䓫ምąȠĄ͚ⷠহą㏠ڒ͚ప⩌ᔮ᪴ᬻᐧ䃫᪡Ҁጰᅭ
                                                               ∂⮱Ꮒ➖喍L-๖ۙ⅕䚥Ƞჹ侙䚥Ƞ侙Გ䚥喎ͨ㺮᭜
            ͚喑䔆ᄦэ㐌⮱ࡃጒȠᱽ᫆Ƞ⩌➖ぶ㵹͇⮱ࣾᆂ᣽
                                                               ⩞ⴠ⇦͚࣌᫆◰ㆨᝃ㠜⣜ㆨ➖䉕⅔ࡃ㔹Გ                  [54] 喑䔆Ꭳ̺
            ܧγ᫝⮱㺮Ⅿȡₑݺ喑పڲใ౴ͨ㺮䛴ःࡃ႓∂䔈
                                                               ᭜̭᲎ⱌₐ⮱㐬㞟⩌ϔ䌜㏬ȡ䮼Ɑⴠ⇦⮱⊵㕄͚ࣷప
            㵹 ȕ-͆⅕䚥⮱⩌ϔ喑ࣺᏁ᲎У㠈ݨȠޜϔ➖็喑㘪
                                                               Ąࣹⷠąᝅ⪒Ⱋᴴ⮱᣽ܧ喑䔘ܴ䰭㺮ᄨឫ̭᲎ᰡߍѻ
            㕄๔ȡ䓾ᎡᲒ喑䮼Ɑ㐬㞟Ƞ⣜Ԋࣷजᠮ㐚ࣾᆂ⤳ᔢ
                                                               ⷠȠ⣜Ԋ⮱व᜽䌜ᒱᲒᣕ䔈 ȕ-͆⅕䚥⮱㐬㞟⩌ϔȡ
            䔽⌽ౕڕ̓⩹㠰డᒏ᜽ڞ䃳喑䛴⩕⩌➖∂ݣิ ȕ-͆
            ⅕䚥ःᓄγ䒰๔⮱ⵁ⾣䔈ᆂ喑Ꭳ䔽⌽᜽ͧ ȕ-͆⅕䚥                           ࣯㔰᪴⡛喟
            ⮱ͨ≮⩌ϔ᫦ᐼȡ͚పౕⰥڠⵁ⾣䶳ഌጟัλ̓⩹                             [1]   MENG  X  L  (ႌ⺒哆).  Advance  in  application  of  sports  nutrition
            䶳ٵౝѺ喑Ꭳౕ́ϔ͇ࡃᏁ⩕᫦䲏Όःᓄγ䒰๔⾮                                 supplements[J]. Journal of Food Safety and Quality (丌৮Ⴖڕ䉕䛼
                                                                   ᷭ≸႓្), 2019, 10(20): 6823-6828.
            ⵡȡⰛݺ喑⩌➖∂ݣิ ȕ-͆⅕䚥ͨ㺮࠲᠙ࣾ䚢∂ᝃ
                                                               [2]   ZHENG J H (䗾ݾᕿ), ZHANG Q P (ᑍ⻸㤺), WU X H (ॡ䱋㏏),
            䚣∂͑⻺᫦ᐼȡ仃ٵ喑ࣾ䚢∂ゃ⪒ͨ㺮䕇䓴ᐯ⎽䓴                                 et al. Effect of ȕ-alanine supplementation on athletic ability[J]. Sport
            䛼㶕䓫Ⱕڠ䚣Ƞ᪟䮑ޜϔ➖А䅏䕁ᒱࣷᑧࡃϔ➖व                                 Science Research (Ҁ㗟⻾ⵁ), 2019, 40(3): 99-104.
                                                               [3]   HU M (㘎ႌ). Effect of dietary L-histidine and ȕ-alanine on growth
            ᜽⮱ڠ䩛䭽䕌ₒ俑ぶ᫦ᐼᄦ⩌ϔ㣹ᵗ䔈㵹ᩦ䕍喑Ҭ                                 performance,  meat  quality  and  muscle-derived  active  peptide  in
            ͸㘪㣤ᓄᰡ倅ϔ⢴⮱ ȕ-͆⅕䚥ȡⰛݺ喑䄒∂ᰭ倅 ȕ-                             broiler chicks[D]. Beijing: Chinese Academy of Agricultural Sciences
                                                                   (͚పۉ͇⻾႓䮏), 2018.
                                  [4]
            ͆⅕䚥ϔ䛼ͧ 72.05  g/L 喑́ႅౕⱭޜϔ➖䒰็Ƞ                      [4]   XU  J  (ᒽᐧ).  Metabolic  engineering  of  Escherichia coli  for  the
            ϔ➖㏜ࡃఝ䯫ࣷ⩌ϔক᱌䒰䪬ࣷぶ䬛䷅喑ᅇ䓫̺ݝ                                 efficient production of ȕ-alanine[D]. Wuxi: Jiangnan University (↌
                                                                   ࢄ๔႓), 2021.
            ጒ͇ࡃ⩌ϔ㺮Ⅿ喠᱗Გຯ㘪䔈̭ₒ᣽倅ϔ䛼ࣷ䒙ࡃ                             [5]   LI B (ᱻࢇ), SU C L (წឬ⧅), FAN C (㠰䊲), et al. Construction and
            ⢴喑Ꭳ჋⣝ϔ➖⮱ѻ᜽᱙Ƞ倅᩵᣽ः喑ᄳ᭜䲋፥ڤ                                 optimization of high-yield ȕ-alanine genetically engineered bacteria
                                                                   [J]. Journal of Dalian Polytechnic University (๔䔋ጒ͇๔႓႓្),
            ᰶݺᮜ⮱ឭᱜ䌜㏬ȡڣ⁎喑䚣∂䒙ࡃゃ⪒ͨ㺮᭜䕇                                 2019, 38(1): 1-4.
            䓴ᐯ⎽㶕䓫̺हᲒ⎽⮱ ADC 㑃⴮ധ఍ panD喑ᄦڣ                        [6]   DENG S Y (䗀ᕊ䷃), ZHANG J L (ᑍैͪ), CAI Z (㩎ⱌ), et al.
                                                                   Characterization of L-aspartate-Į-decarboxylase from Bacillus subtilis
            䔈㵹Ⴧ◦⾮अȠჳ⴮ၽхࡃぶᩦ䕍喑Ҭ͸ٸ᰺๖♣
                                                                   [J]. Chinese Journal of Biotechnology (⩌➖ጒ⼸႓្), 2015, 31(8):
            L-๖ۙ⅕䚥-Į-㙞㓔䚣⮱㑧䮤喑㣤ᓄᰡ倅⮱ ȕ-͆⅕䚥                            1184-1193.
                                                               [7]   ZHANG T H (ᑍ㚫䒶). Expression and modification of L-aspartate-
            ϔ䛼ࣷ䒙ࡃ⢴ȡϻ䒙ࡃ᩵᳉ࣷ䚣➦ᕔᲒⰸ喑᳜㡶㟪
                                                                   Į-decarboxylase  for  the  whole-cell  transformation  of  ȕ-alanine[D].
            ႏᱳ㣹Გ⎽⮱ L-๖ۙ⅕䚥-Į-㙞㓔䚣ᕔ䉕ᰭҠ喑́ڣ                             Wuxi: Jiangnan University (↌ࢄ๔႓), 2018.
            ⾮अҀ⮱ ȕ-͆⅕䚥ϔ䛼ᰭ倅ज䓫 215.3 g/L喑䒙ࡃ⢴                     [8]   CHEN  M  L  (䭵ᬻϛ),  QI Y (⹮⦈),  XIAO  Y  M  (㗃ᐣ䨚), et al.
                                                                   Biocatalytic  synthesis  of  ȕ-alanine  from  fumaric  acid  by  a  two-
                       [7]
            倅䓫 94.10% ȡᄦλ䚣∂ݣิ ȕ-͆⅕䚥ゃ⪒喑䮑γ                           enzyme system[J]. Bulletin of Fermentation Science and Technology
            ᄦ̺हᲒ⎽⮱ ADC 䔈㵹ᩦ䔈喑䔅ᄳڣ̻ڣЃ䚣䔈㵹                              (ࣾ䚢⻾ឭ䕇䃜), 2018, 47(4): 231-235.
                                                               [9]   WANG L, PIAO X, CUI S, et al. Enhanced production of ȕ-alanine
            㖁⩕喑Ҭ͸В̺ह⮱Ꮒ➖Გݣิ ȕ-͆⅕䚥喑В᱌䭺                               through  co-expressing  two  different  subtypes  of  L-aspartate-Į-
            ѻᏂ➖᜽᱙喑᣽倅Ꮒ➖䒙ࡃ᩵⢴ȡҸຯ喑WANG ぶ                     [9]       decarboxylase[J]. Journal of Industrial Microbiology Biotechnology,
                                                                   2020, 47(6/7): 465-474.
            䕇䓴̶䚣㏔㖁喑ᰭ㏵㣤ᓄγ 200.3 g/L ⮱ ȕ-͆⅕䚥ϔ                    [10]  LÓPEZ-ÁMANO M, BELTRÁN L F L A, SÁNCHEZ-THOMAS R,
            䛼̻ 90.0%⮱䒙ࡃ⢴ȡ                                          et al.  A  novel  way  to  synthesize  pantothenate  in  bacteria  involves
                                                                   ȕ-alanine  synthase  present  in  uracil  degradation  pathway[J].
                 㮪♣ ȕ-͆⅕䚥⩌➖∂ݣิⵁ⾣ౕיࡃ⩕䚣⮱ᐯ                            Microbiology Open, 2020, 9(4): e1006.
            ⎽㶕䓫ȠჇᕔܳᲽȠࣾ䚢хࡃࣷ䒙ࡃᏁ⩕ぶ᫦䲏౴                             [11]  MIAO  Y,  LIU  J,  WANG  X,  et al.  Fatty  acid  feedstocks  enable  a
                                                                   highly  efficient  glyoxylate-TCA  cycle  for  high-yield  production of
            ःᓄγ䒰๔⮱䔈ₒ喑ѳϺ♣ႅౕВ̸܍͗䰭㺮㐔㐚                                 ȕ-alanine[J]. mLife, 2022, 1(2): 171-182.
            ᩦ䔈͸ัȡ仃ٵ喑䚣יࡃᱧ⤳᫦䲏⮱ⵁ⾣䔅䒰ᄾ喑                             [12]  KO Y S, KIM J W, CHAE T U, et al. A novel biosynthetic pathway
                                                                   for the production of acrylic acid through ȕ-alanine route in Escherichia
            ᅑڣ L-๖ۙ⅕䚥-Į-㙞㓔䚣⮱ᱧ⤳ᕔ๞≨ᱧݣϺᒲ
                                                                   coli[J]. ACS Synthetic Biology, 2020, 9(5): 1150-1159.
            䔈̭ₒ䬽ᬻȡڣ⁎喑⾮अҀᲱᐧ᫦䲏⮱ⵁ⾣๔็ӊ                             [13]  XU  J,  ZHU  Y,  ZHOU  Z  M.  Systematic  engineering  of  the  rate-
                                                                   limiting step of ȕ-alanine biosynthesis in Escherichia coli[J]. Electronic
            䊃㏼侹䔈㵹⾮अѺ◦⮱䔶᠖ࣷ䃫䃎喑ⵁ⾣㔲䕇፥䰭
                                                                   Journal of Biotechnology, 2021, 51: 88-94.
            㺮䔈㵹๔䛼⾮अҀ⮱よ䔶喑᝺㘪㣤ᓄᲮᄾ᪝ᕔ䉕ᓄ                             [14]  ZHU D (ᱞ䔗). A pathway for degradation of uracil to acetyl coenzyme
            ݝᩦ઱⮱⾮अҀ        [36] 喑Ხ๔ౝ䭽ݣγⰥڠ䚣⮱ᩦ䕍ȡ                     A in Bacillus megaterium[D]. Tianjin: Tianjin University (๖≒๔
                                                                   ႓), 2020.
            䓾ᎡᲒ喑䮼Ɑϧጒᮧ㘪Ƞᱧக႓΍হ⌞Ꮣ႓΍                      [52] ぶ   [15]  ZOU X, GUO L, HUANG L, et al. Pathway construction and metabolic
   61   62   63   64   65   66   67   68   69   70   71