Page 66 - 《精细化工》2023年第4期
P. 66
g752g ㏳ࡃጒ FINE CHEMICALS す 40 ࢤ
䓴хࡃड़ߕၽȠᩦअധᠤ䉊ぶᐼ倅ѻ᩵䚣 ឭᱜ⮱䓲䕌ቈ䊤喑ϧጒ䃫䃎䚣㯸⮪䔽⌽ͧ⣝ [53] ȡ
⮱㶕䓫䛼喑ϻ㔹䬡ᣒ⣝̺हיࡃࣺᏁ⮱Ⱕοࡼहȡ ឭᱜ⮱Ꮑ⩕ͧⰥڠ䚣יࡃᱧݣ⮱㼐Ჽࣷϧጒ䃫䃎
ᩦ䕍ӈ⮱ឭᱜ⃢ȡ䕇䓴䃎ツᱧ䒲ߖϧጒ䚣䃫
4 㐀䄚̻ᆂ᱈ 䃎喑ᄳч⤳ᕔȠ倅᩵ౝ㼐۠ᒀݺⰥڠ䚣יࡃ᩵⢴ѻ
ࣷᭀ≨ぶ䬛䷅ȡᰭऻ喑㮪♣䚣∂ݣิ ȕ-͆⅕䚥⮱
͚๛䉏㏼༁অчすΊ⁎ч䃛ᬻܧ喟㺮ិĄⷠ
᱙䒰ѻȠϔ䛼䒰倅喑ѳ᭜ࢂ䚣∂Ƞࣹ䚣∂Ƞ̶䚣
䓫ምąȠĄ͚ⷠহą㏠ڒ͚ప⩌ᔮ᪴ᬻᐧ䃫᪡Ҁጰᅭ
∂⮱Ꮒ➖喍L-๖ۙ⅕䚥Ƞჹ侙䚥Ƞ侙Გ䚥喎ͨ㺮᭜
͚喑䔆ᄦэ㐌⮱ࡃጒȠᱽ᫆Ƞ⩌➖ぶ㵹͇⮱ࣾᆂ
⩞ⴠ⇦͚࣌᫆◰ㆨᝃ㠜⣜ㆨ➖䉕⅔ࡃ㔹Გ [54] 喑䔆Ꭳ̺
ܧγ⮱㺮Ⅿȡₑݺ喑పڲใͨ㺮䛴ःࡃ႓∂䔈
᭜̭ⱌₐ⮱㐬㞟⩌ϔ䌜㏬ȡ䮼Ɑⴠ⇦⮱⊵㕄͚ࣷప
㵹 ȕ-͆⅕䚥⮱⩌ϔ喑ࣺᏁУ㠈ݨȠޜϔ➖็喑㘪
Ąࣹⷠąᝅ⪒Ⱋᴴ⮱ܧ喑䔘ܴ䰭㺮ᄨឫ̭ᰡߍѻ
㕄๔ȡ䓾ᎡᲒ喑䮼Ɑ㐬㞟Ƞ⣜Ԋࣷजᠮ㐚ࣾᆂ⤳ᔢ
ⷠȠ⣜Ԋ⮱व䌜ᒱᲒᣕ䔈 ȕ-͆⅕䚥⮱㐬㞟⩌ϔȡ
䔽⌽ౕڕ̓⩹㠰డᒏڞ䃳喑䛴⩕⩌➖∂ݣิ ȕ-͆
⅕䚥ःᓄγ䒰๔⮱ⵁ⾣䔈ᆂ喑Ꭳ䔽⌽ͧ ȕ-͆⅕䚥 ࣯㔰᪴⡛喟
⮱ͨ≮⩌ϔᐼȡ͚పౕⰥڠⵁ⾣䶳ഌጟัλ̓⩹ [1] MENG X L (ႌ⺒哆). Advance in application of sports nutrition
䶳ٵౝѺ喑Ꭳౕ́ϔ͇ࡃᏁ⩕䲏Όःᓄγ䒰๔⾮ supplements[J]. Journal of Food Safety and Quality (丌৮Ⴖڕ䉕䛼
ᷭ≸႓្), 2019, 10(20): 6823-6828.
ⵡȡⰛݺ喑⩌➖∂ݣิ ȕ-͆⅕䚥ͨ㺮࠲᠙ࣾ䚢∂ᝃ
[2] ZHENG J H (䗾ݾᕿ), ZHANG Q P (ᑍ㤺), WU X H (ॡ䱋㏏),
䚣∂͑ᐼȡ仃ٵ喑ࣾ䚢∂ゃ⪒ͨ㺮䕇䓴ᐯ⎽䓴 et al. Effect of ȕ-alanine supplementation on athletic ability[J]. Sport
䛼㶕䓫Ⱕڠ䚣Ƞ䮑ޜϔ➖А䅏䕁ᒱࣷᑧࡃϔ➖व Science Research (Ҁ㗟ⵁ), 2019, 40(3): 99-104.
[3] HU M (㘎ႌ). Effect of dietary L-histidine and ȕ-alanine on growth
⮱ڠ䩛䭽䕌ₒ俑ぶᐼᄦ⩌ϔ㣹ᵗ䔈㵹ᩦ䕍喑Ҭ performance, meat quality and muscle-derived active peptide in
㘪㣤ᓄᰡ倅ϔ⢴⮱ ȕ-͆⅕䚥ȡⰛݺ喑䄒∂ᰭ倅 ȕ- broiler chicks[D]. Beijing: Chinese Academy of Agricultural Sciences
(͚పۉ͇႓䮏), 2018.
[4]
͆⅕䚥ϔ䛼ͧ 72.05 g/L 喑́ႅౕⱭޜϔ➖䒰็Ƞ [4] XU J (ᒽᐧ). Metabolic engineering of Escherichia coli for the
ϔ➖㏜ࡃఝ䯫ࣷ⩌ϔক䒰䪬ࣷぶ䬛䷅喑ᅇ䓫̺ݝ efficient production of ȕ-alanine[D]. Wuxi: Jiangnan University (
ࢄ๔႓), 2021.
ጒ͇ࡃ⩌ϔ㺮Ⅿ喠᱗Გຯ㘪䔈̭ₒ倅ϔ䛼ࣷ䒙ࡃ [5] LI B (ᱻࢇ), SU C L (წឬ⧅), FAN C (㠰䊲), et al. Construction and
⢴喑Ꭳ⣝ϔ➖⮱ѻ᱙Ƞ倅᩵ः喑ᄳ᭜䲋፥ڤ optimization of high-yield ȕ-alanine genetically engineered bacteria
[J]. Journal of Dalian Polytechnic University (๔䔋ጒ͇๔႓႓្),
ᰶݺᮜ⮱ឭᱜ䌜㏬ȡڣ⁎喑䚣∂䒙ࡃゃ⪒ͨ㺮᭜䕇 2019, 38(1): 1-4.
䓴ᐯ⎽㶕䓫̺हᲒ⎽⮱ ADC 㑃ധ panD喑ᄦڣ [6] DENG S Y (䗀ᕊ䷃), ZHANG J L (ᑍैͪ), CAI Z (㩎ⱌ), et al.
Characterization of L-aspartate-Į-decarboxylase from Bacillus subtilis
䔈㵹Ⴧ◦⾮अȠჳၽхࡃぶᩦ䕍喑Ҭٸ๖♣
[J]. Chinese Journal of Biotechnology (⩌➖ጒ⼸႓្), 2015, 31(8):
L-๖ۙ⅕䚥-Į-㙞㓔䚣⮱㑧䮤喑㣤ᓄᰡ倅⮱ ȕ-͆⅕䚥 1184-1193.
[7] ZHANG T H (ᑍ㚫䒶). Expression and modification of L-aspartate-
ϔ䛼ࣷ䒙ࡃ⢴ȡϻ䒙ࡃ᩵ࣷ䚣➦ᕔᲒⰸ喑᳜㡶㟪
Į-decarboxylase for the whole-cell transformation of ȕ-alanine[D].
ႏᱳ㣹Გ⎽⮱ L-๖ۙ⅕䚥-Į-㙞㓔䚣ᕔ䉕ᰭҠ喑́ڣ Wuxi: Jiangnan University (ࢄ๔႓), 2018.
⾮अҀ⮱ ȕ-͆⅕䚥ϔ䛼ᰭ倅ज䓫 215.3 g/L喑䒙ࡃ⢴ [8] CHEN M L (䭵ᬻϛ), QI Y (⦈), XIAO Y M (㗃ᐣ䨚), et al.
Biocatalytic synthesis of ȕ-alanine from fumaric acid by a two-
[7]
倅䓫 94.10% ȡᄦλ䚣∂ݣิ ȕ-͆⅕䚥ゃ⪒喑䮑γ enzyme system[J]. Bulletin of Fermentation Science and Technology
ᄦ̺हᲒ⎽⮱ ADC 䔈㵹ᩦ䔈喑䔅ᄳڣ̻ڣЃ䚣䔈㵹 (ࣾ䚢ឭ䕇䃜), 2018, 47(4): 231-235.
[9] WANG L, PIAO X, CUI S, et al. Enhanced production of ȕ-alanine
㖁⩕喑ҬВ̺ह⮱Ꮒ➖Გݣิ ȕ-͆⅕䚥喑В䭺 through co-expressing two different subtypes of L-aspartate-Į-
ѻᏂ➖᱙喑倅Ꮒ➖䒙ࡃ᩵⢴ȡҸຯ喑WANG ぶ [9] decarboxylase[J]. Journal of Industrial Microbiology Biotechnology,
2020, 47(6/7): 465-474.
䕇䓴̶䚣㏔㖁喑ᰭ㏵㣤ᓄγ 200.3 g/L ⮱ ȕ-͆⅕䚥ϔ [10] LÓPEZ-ÁMANO M, BELTRÁN L F L A, SÁNCHEZ-THOMAS R,
䛼̻ 90.0%⮱䒙ࡃ⢴ȡ et al. A novel way to synthesize pantothenate in bacteria involves
ȕ-alanine synthase present in uracil degradation pathway[J].
㮪♣ ȕ-͆⅕䚥⩌➖∂ݣิⵁ⾣ౕיࡃ⩕䚣⮱ᐯ Microbiology Open, 2020, 9(4): e1006.
⎽㶕䓫ȠჇᕔܳᲽȠࣾ䚢хࡃࣷ䒙ࡃᏁ⩕ぶ䲏 [11] MIAO Y, LIU J, WANG X, et al. Fatty acid feedstocks enable a
highly efficient glyoxylate-TCA cycle for high-yield production of
ःᓄγ䒰๔⮱䔈ₒ喑ѳϺ♣ႅౕВ̸܍͗䰭㺮㐔㐚 ȕ-alanine[J]. mLife, 2022, 1(2): 171-182.
ᩦ䔈ัȡ仃ٵ喑䚣יࡃᱧ⤳䲏⮱ⵁ⾣䔅䒰ᄾ喑 [12] KO Y S, KIM J W, CHAE T U, et al. A novel biosynthetic pathway
for the production of acrylic acid through ȕ-alanine route in Escherichia
ᅑڣ L-๖ۙ⅕䚥-Į-㙞㓔䚣⮱ᱧ⤳ᕔ≨ᱧݣϺᒲ
coli[J]. ACS Synthetic Biology, 2020, 9(5): 1150-1159.
䔈̭ₒ䬽ᬻȡڣ⁎喑⾮अҀᲱᐧ䲏⮱ⵁ⾣๔็ӊ [13] XU J, ZHU Y, ZHOU Z M. Systematic engineering of the rate-
limiting step of ȕ-alanine biosynthesis in Escherichia coli[J]. Electronic
䊃㏼侹䔈㵹⾮अѺ◦⮱䔶᠖ࣷ䃫䃎喑ⵁ⾣㔲䕇፥䰭
Journal of Biotechnology, 2021, 51: 88-94.
㺮䔈㵹๔䛼⾮अҀ⮱よ䔶喑㘪㣤ᓄᲮᄾᕔ䉕ᓄ [14] ZHU D (ᱞ䔗). A pathway for degradation of uracil to acetyl coenzyme
ݝᩦ⮱⾮अҀ [36] 喑Ხ๔ౝ䭽ݣγⰥڠ䚣⮱ᩦ䕍ȡ A in Bacillus megaterium[D]. Tianjin: Tianjin University (๖≒๔
႓), 2020.
䓾ᎡᲒ喑䮼Ɑϧጒᮧ㘪Ƞᱧக႓হ⌞Ꮣ႓ [52] ぶ [15] ZOU X, GUO L, HUANG L, et al. Pathway construction and metabolic