Page 144 - 《精细化工》2023年第5期
P. 144
·1064· 精细化工 FINE CHEMICALS 第 40 卷
对 MO、AF、RhB、MG、CV 等染料均具有光催化 at ambient and low temperature: Performance, mechanism and
活性,其中 60% PGS(PEI)/CaIn 2 S 4 对 MO 光降解较 reaction kinetics[J]. Applied Surface Science, 2019, 486(1): 420-430.
[14] LI X Y, PENG K. Hydrothermal synthesis of MoS 2 nanosheet/
–
佳,光照 60 min,MO 降解率可达 96.9%,•O 2 是该 palygorskite nanofiber hybrid nanostructures for enhanced catalytic
反应的活性基团。复合材料中 PGS 与 CaIn 2 S 4 之间 activity[J]. Applied Clay Science, 2018, 162(1): 175-181.
[15] CHEN D M, DU Y, ZHU H L, et al. Synthesis and characterization
的内置电场、可接收光生电子的 PEI,是促进光生 of a microfibrous TiO 2-CdS/palygorskite nanostructured material
电子与空穴分离的主要因素,二者的协同作用提高 with enhanced visible-light photocatalytic activity[J]. Applied Clay
了 CaIn 2 S 4 的光催化活性。太阳光下对 MO、AF 混 Science, 2014, 87(1): 285-291.
[16] FAN Z, PO K H L, WONG K K, et al. Polyethylenimine-modified
合染料的降解显示,该复合材料可有效地利用自然 graphene oxide as a novel antibacterial agent and its synergistic
光进行染料废水治理。本研究对设计低成本、高效 effect with daptomycin for methicillin-resistant staphylococcus
益的可见光响应型光催化剂具有指导意义,为利用天 aureus[J]. ACS Applied Nano Materials, 2018, 1(4): 1811-1818.
[17] ARSHAD F, SELVARAJ M, ZAIN J, et al. Polyethylenimine modified
然矿物及太阳光治理废水提供了一种更广阔的思路。 graphene oxide hydrogel composite as an efficient adsorbent for
heavy metal ions[J]. Separation and Purification, 2019, 209(1): 870-880.
参考文献: [18] ORTIZ-BUSTOS J, FAJARDO M, HIERRO I D, et al. Versatile
titanium dioxide nanoparticles prepared by surface-grown polymerization
[1] CHEN Z X, LI D Z, ZHANG W J, et al. Photocatalytic degradation
of dyes by ZnIn 2S 4 microspheres under visible light irradiation[J]. of polyethylenimine for photodegradation and catalytic C—C bond
The Journal of Physical Chemistry C, 2009, 113(11): 4433-4440. forming reactions[J]. Molecular Catalysis, 2019, 475: 110501.
[2] ZHANG W, CHEN H, ZHANG L N, et al. A facile hydrothermal [19] YANG D, FU P, ZHANG F J, et al. High efficiency inverted polymer
approach for the deposition of CaIn 2S 4 hierarchical nanosheet films solar cells with room-temperature titanium oxide/polyethylenimine
for photocatalytic application[J]. Journal of Alloys and Compounds, films as electron transport layers[J]. Journal of Materials Chemistry
2020, 821(1): 153545. A, 2014, 2(41): 17281-17285.
[3] DING J J, SUN S, YAN W H, et al. Photocatalytic H 2 evolution on a [20] WU X P, ZHU W Y, ZHANG X L, et al. Catalytic deposition of
novel CaIn 2S 4 photocatalyst under visible light irradiation[J]. nanocarbon onto palygorskite and its adsorption of phenol[J].
International Journal of Hydrogen Energy, 2013, 38(30): 13153-13158. Applied Clay Science, 2011, 52(4): 400-406.
[4] JIANG D L, LI J, XING C S, et al. Two-dimensional CaIn 2S 4/g-C 3N 4 [21] PEI C Y, CHEN Y G, WANG L et al. Step-scheme WO 3/CdIn 2S 4
heterojunction nanocomposite with enhanced visible-light photocatalytic hybrid system with high visible light activity for tetracycline
activities: Interfacial engineering and mechanism insight[J]. ACS hydrochloride photodegradation[J]. Applied Clay Science, 2021,
Applied Material Interfaces, 2015, 7(34): 19234-19242. 535(1): 147682.
[5] DING J J, HONG B, LUO Z L, et al. Mesoporous monoclinic [22] DENG F, LU X Y, LUO Y B, et al. Novel visible-light-driven direct
CaIn 2S 4 with surface nanostructure: An efficient photocatalyst for Z-scheme CdS/CuInS 2 nanoplates for excellent photocatalytic degradation
hydrogen production under visible light[J]. The Journal of Physical performance and highly-efficient Cr( Ⅵ ) reduction[J]. Chemical
Chemistry C, 2014, 118(48): 27690-27697. Engineering Journal, 2019, 361(1): 1451-1461.
[6] ZHANG Z Z, ZHANG Y Y, HAN X X, et al. Assembly of CaIn 2S 4 [23] ZHANG S L, ZHONG L F, YANG H M, et al. Magnetic carbon-
on defect-rich BiOCl for acceleration of interfacial charge separation coated palygorskite loaded with cobalt nanoparticles for Congo Red
and photocatalytic phenol degradation via S-scheme electron transfer removal from waters[J]. Applied Clay Science, 2020, 198 (1): 105856.
mechanism[J]. Catalysts, 2021, 11(9): 1130. [24] TANG Z J (唐忠家), LI D L (李德丽), TIAN L J (田丽君), et al.
[7] LIU B B, LIU X J, LI L, et al. CaIn 2S 4 decorated WS 2 hybrid for Photocatalytic degradation of Methyl Orange by Cd 0.5Zn 0.5S/MoO 3
efficient Cr(Ⅵ) reduction[J]. Applied Surface Science, 2019, 484(1): composite[J]. Fine Chemicals (精细化工), 2021, 38(11): 2240-2248.
300-306. [25] ZHANG P, ZHANG L N, DONG E L, et al. Synthesis of CaIn 2S 4/
[8] XU S Y, DAI J, YANG J, et al. Facile synthesis of novel CaIn 2S 4/ TiO 2 heterostructures for enhanced UV-Visible light photocatalytic
ZnIn 2S 4 composites with efficient performance for photocatalytic activity[J]. Journal of Alloys and Compounds, 2021, 885(1): 161027.
reduction of Cr( Ⅵ ) under simulated sunlight irradiation[J]. [26] YU W W, CHEN X A, MEI W, et al. Photocatalytic and
Nanomaterials, 2018, 8(7): 487. electrochemical performance of three-dimensional reduced graphene
[9] WAN S P, OU M, ZHONG Q, et al. Z-scheme CaIn 2S 4/Ag 3PO 4 oxide/WS 2/Mg-doped ZnO composites[J]. Applied Surface Science,
nanocomposite with superior photocatalytic NO removal performance: 2017, 400(1): 129-138.
Fabrication, characterization and mechanistic study[J]. New Journal [27] MURUGALAKSHMI M, MAMBA G, MUTHURAJ V. A novel
of Chemistry, 2018, 42(1): 318-326. In 2S 3/Gd 2O 3 p-n type visible light-driven heterojunction photocatalyst
[10] WAN S P, OU M, CAI W, et al. Preparation, characterization, and for dual role of Cr(Ⅵ) reduction and oxytetracycline degradation[J].
mechanistic analysis of BiVO 4/CaIn 2S 4 hybrids that photocatalyze Applied Surface Science, 2020, 527(1): 146890
NO removal under visible light[J]. Journal of Physics and Chemistry [28] HUANG J Y, WANG X, PAN Z Q, et al. Efficient degradation of
of Solids, 2018, 122(1): 239-245. perfluorooctanoic acid (PFOA) by photocatalytic ozonation[J].
[11] LI J, MENG S C, WANG T Y, et al. Novel Au/CaIn 2S 4 nanocomposites Chemical Engineering Journal, 2016, 296(1): 329-334.
with plasmon-enhanced photocatalytic performance under visible [29] LIN Y, YANG C P, WU S H, et al. Construction of built-in electric
light irradiation[J]. Applied Surface Science, 2017, 396(1): 430-437. field within silver phosphate photocatalyst for enhanced removal of
[12] LUO Y T, LUO J, HUA Y X, et al. One pot synthesis of α-AgVO 3/ recalcitrant organic pollutants[J]. Advanced Functional Materials,
palygorskite nanocomposites with enhanced photocatalytic activity 2020, 30: 22002918.
using triple roles of palygorskite: Supporter, dispersant and growth- [30] SUN B, HONG W, THIBAU E S, et al. Polyethylenimine (PEI) as
directing agent[J]. Dalton Transaction, 2018, 47(47): 16855-16861. an effective dopant to conveniently convert ambipolar and p-type
[13] WANG C, ZOU X H, LIU H B, et al. A highly efficient catalyst of polymers into unipolar n-type polymers[J]. ACS Applied Materials
palygorskite-supported manganese oxide for formaldehyde oxidation Interfaces, 2015, 7(33): 18662-18671.