Page 144 - 《精细化工》2023年第5期
P. 144

·1064·                            精细化工   FINE CHEMICALS                                 第 40 卷

            对 MO、AF、RhB、MG、CV 等染料均具有光催化                            at ambient and low temperature: Performance,  mechanism  and
            活性,其中 60% PGS(PEI)/CaIn 2 S 4 对 MO 光降解较                reaction kinetics[J]. Applied Surface Science, 2019, 486(1): 420-430.
                                                               [14]  LI X  Y, PENG  K. Hydrothermal synthesis of MoS 2 nanosheet/
                                                      –
            佳,光照 60 min,MO 降解率可达 96.9%,•O 2 是该                     palygorskite nanofiber hybrid nanostructures for enhanced catalytic
            反应的活性基团。复合材料中 PGS 与 CaIn 2 S 4 之间                      activity[J]. Applied Clay Science, 2018, 162(1): 175-181.
                                                               [15]  CHEN D M, DU Y, ZHU H L, et al. Synthesis and characterization
            的内置电场、可接收光生电子的 PEI,是促进光生                               of  a microfibrous TiO 2-CdS/palygorskite nanostructured material
            电子与空穴分离的主要因素,二者的协同作用提高                                 with enhanced visible-light  photocatalytic activity[J]. Applied Clay
            了 CaIn 2 S 4 的光催化活性。太阳光下对 MO、AF 混                      Science, 2014, 87(1): 285-291.
                                                               [16]  FAN Z, PO K H L, WONG K K, et al. Polyethylenimine-modified
            合染料的降解显示,该复合材料可有效地利用自然                                 graphene oxide as a novel antibacterial agent and its synergistic
            光进行染料废水治理。本研究对设计低成本、高效                                 effect with daptomycin for methicillin-resistant  staphylococcus
            益的可见光响应型光催化剂具有指导意义,为利用天                                aureus[J]. ACS Applied Nano Materials, 2018, 1(4): 1811-1818.
                                                               [17]  ARSHAD F, SELVARAJ M, ZAIN J, et al. Polyethylenimine modified
            然矿物及太阳光治理废水提供了一种更广阔的思路。                                graphene  oxide hydrogel composite as an efficient adsorbent  for
                                                                   heavy metal ions[J]. Separation and Purification, 2019, 209(1): 870-880.
            参考文献:                                              [18]  ORTIZ-BUSTOS J, FAJARDO M, HIERRO I D,  et al. Versatile
                                                                   titanium dioxide nanoparticles prepared by surface-grown polymerization
            [1]   CHEN Z X, LI D Z, ZHANG W J, et al. Photocatalytic degradation
                 of dyes by  ZnIn 2S 4  microspheres under visible light irradiation[J].   of polyethylenimine for photodegradation and catalytic C—C bond
                 The Journal of Physical Chemistry C, 2009, 113(11): 4433-4440.   forming reactions[J]. Molecular Catalysis, 2019, 475: 110501.
            [2]   ZHANG  W, CHEN H, ZHANG  L  N,  et al. A facile hydrothermal   [19]  YANG D, FU P, ZHANG F J, et al. High efficiency inverted polymer
                 approach for the deposition of CaIn 2S 4 hierarchical nanosheet films   solar cells with room-temperature titanium oxide/polyethylenimine
                 for photocatalytic application[J]. Journal of Alloys and Compounds,   films as electron transport layers[J]. Journal of Materials Chemistry
                 2020, 821(1): 153545.                             A, 2014, 2(41): 17281-17285.
            [3]   DING J J, SUN S, YAN W H, et al. Photocatalytic H 2 evolution on a   [20]  WU X P, ZHU  W Y,  ZHANG  X L,  et al. Catalytic deposition of
                 novel CaIn 2S 4  photocatalyst under visible light  irradiation[J].   nanocarbon onto  palygorskite and its adsorption of  phenol[J].
                 International Journal of Hydrogen Energy, 2013, 38(30): 13153-13158.   Applied Clay Science, 2011, 52(4): 400-406.
            [4]   JIANG D L, LI J, XING C S, et al. Two-dimensional CaIn 2S 4/g-C 3N 4   [21]  PEI C  Y,  CHEN Y G,  WANG L  et al. Step-scheme  WO 3/CdIn 2S 4
                 heterojunction nanocomposite with enhanced visible-light photocatalytic   hybrid system with high  visible light activity for tetracycline
                 activities: Interfacial engineering and mechanism insight[J]. ACS   hydrochloride photodegradation[J]. Applied Clay Science, 2021,
                 Applied Material Interfaces, 2015, 7(34): 19234-19242.   535(1): 147682.
            [5]   DING J J, HONG B, LUO  Z  L,  et al. Mesoporous  monoclinic   [22]  DENG F, LU X Y, LUO Y B, et al. Novel visible-light-driven direct
                 CaIn 2S 4 with surface nanostructure: An efficient photocatalyst for   Z-scheme CdS/CuInS 2 nanoplates for excellent photocatalytic degradation
                 hydrogen production under visible light[J]. The Journal of Physical   performance and highly-efficient Cr( Ⅵ ) reduction[J]. Chemical
                 Chemistry C, 2014, 118(48): 27690-27697.          Engineering Journal, 2019, 361(1): 1451-1461.
            [6]   ZHANG Z Z, ZHANG Y Y, HAN X X, et al. Assembly of CaIn 2S 4   [23]  ZHANG S L, ZHONG L F,  YANG  H M,  et al. Magnetic carbon-
                 on defect-rich BiOCl for acceleration of interfacial charge separation   coated palygorskite loaded with cobalt nanoparticles for Congo Red
                 and photocatalytic phenol degradation via S-scheme electron transfer   removal from waters[J]. Applied Clay Science, 2020, 198 (1): 105856.
                 mechanism[J]. Catalysts, 2021, 11(9): 1130.   [24]  TANG  Z J (唐忠家), LI D  L (李德丽), TIAN  L J (田丽君), et al.
            [7]   LIU B B, LIU X J, LI L, et al. CaIn 2S 4 decorated WS 2 hybrid for   Photocatalytic degradation  of Methyl  Orange by Cd 0.5Zn 0.5S/MoO 3
                 efficient Cr(Ⅵ) reduction[J]. Applied Surface Science, 2019, 484(1):   composite[J]. Fine Chemicals (精细化工), 2021, 38(11): 2240-2248.
                 300-306.                                      [25]  ZHANG P, ZHANG L N, DONG E L, et al. Synthesis of CaIn 2S 4/
            [8]   XU S Y, DAI J, YANG J, et al. Facile synthesis of novel CaIn 2S 4/   TiO 2 heterostructures for enhanced UV-Visible light photocatalytic
                 ZnIn 2S 4 composites with efficient performance for photocatalytic   activity[J]. Journal of Alloys and Compounds, 2021, 885(1): 161027.
                 reduction of  Cr( Ⅵ ) under simulated sunlight irradiation[J].   [26]  YU W W, CHEN X A, MEI W,  et al. Photocatalytic and
                 Nanomaterials, 2018, 8(7): 487.                   electrochemical performance of three-dimensional reduced graphene
            [9]   WAN S P, OU M, ZHONG  Q,  et al.  Z-scheme CaIn 2S 4/Ag 3PO 4   oxide/WS 2/Mg-doped ZnO composites[J]. Applied Surface Science,
                 nanocomposite with superior photocatalytic NO removal performance:   2017, 400(1): 129-138.
                 Fabrication, characterization and mechanistic study[J]. New Journal   [27]  MURUGALAKSHMI M, MAMBA  G, MUTHURAJ V.  A novel
                 of Chemistry, 2018, 42(1): 318-326.               In 2S 3/Gd 2O 3 p-n type visible light-driven heterojunction photocatalyst
            [10]  WAN S P, OU M, CAI W, et al. Preparation, characterization, and   for dual role of Cr(Ⅵ) reduction and oxytetracycline degradation[J].
                 mechanistic analysis of BiVO 4/CaIn 2S 4 hybrids that photocatalyze   Applied Surface Science, 2020, 527(1): 146890
                 NO removal under visible light[J]. Journal of Physics and Chemistry   [28]  HUANG J Y, WANG X, PAN Z Q,  et al. Efficient degradation of
                 of Solids, 2018, 122(1): 239-245.                 perfluorooctanoic acid (PFOA) by photocatalytic ozonation[J].
            [11]  LI J, MENG S C, WANG T Y, et al. Novel Au/CaIn 2S 4 nanocomposites   Chemical Engineering Journal, 2016, 296(1): 329-334.
                 with plasmon-enhanced photocatalytic performance under visible   [29]  LIN Y, YANG C P, WU S H, et al. Construction of built-in electric
                 light irradiation[J]. Applied Surface Science, 2017, 396(1): 430-437.   field within silver phosphate photocatalyst for enhanced removal of
            [12]  LUO Y T, LUO J, HUA Y X, et al. One pot synthesis of α-AgVO 3/   recalcitrant organic pollutants[J]. Advanced Functional Materials,
                 palygorskite nanocomposites with enhanced photocatalytic activity   2020, 30: 22002918.
                 using triple roles of palygorskite: Supporter, dispersant and growth-   [30]  SUN B, HONG W, THIBAU E S, et al. Polyethylenimine (PEI) as
                 directing agent[J]. Dalton Transaction, 2018, 47(47): 16855-16861.   an effective dopant to conveniently convert ambipolar and  p-type
            [13]  WANG C, ZOU X H, LIU H B, et al. A highly efficient catalyst of   polymers into unipolar n-type polymers[J].  ACS Applied Materials
                 palygorskite-supported manganese oxide for formaldehyde oxidation   Interfaces, 2015, 7(33): 18662-18671.
   139   140   141   142   143   144   145   146   147   148   149