Page 181 - 《精细化工》2023年第6期
P. 181

第 6 期               程   昀,等: β-环糊精-纤维素基超交联微球吸附分离苯乙酮和 1-苯乙醇                              ·1331·


            表明 HCCM 吸附剂能较好地分离 AP 和 PE。HCCM                         from  Phyllanthus niruri L. extract[J]. Reactive and Functional
            具有良好的重复利用性,多次循环使用后材料的吸                                 Polymers, 2016, 102: 119-129.
                                                               [15]  WANG Z H, CUI F C, PAN  Y  W,  et al. Hierarchically  micro-
            附性能基本保持不变,具有潜在的工业应用价值。                                 mesoporous  β-cyclodextrin  polymers used for ultrafast  removal of
                                                                   micropollutants from water[J].  Carbohydrate Polymers, 2019, 213:
            参考文献:                                                  352-360.
                                                               [16]  SEKERAK N M, HUTCHINS K M, LUO B, et al. Size control of
            [1]   WANG B, JIN M  M, AN H,  et al. Hydrogenation performance of
                 acetophenone to 1-phenylethanol on highly  active nano Cu/SiO 2   cross-linked carboxy-functionalized polystyrene particles: Four
                 catalyst[J]. Catalysis Letters, 2020, 150(1): 56-64.   orders of magnitude of dimensional versatility[J]. European Polymer
            [2]   TANASH M, ABBOUSHI E,  MAHMOUD A,  et al. Ruthenium   Journal, 2018, 101: 202-210.
                 catalyzed hydrogenation of scetophenone: A kinetic modeling study[J].   [17]  HUANG Q  Y, CHAI K G, ZHOU L Q,  et al. A  phenyl-rich
                 Jordan Journal of Chemistry, 2019, 14(4): 131-138.   β-cyclodextrin porous crosslinked polymer for efficient removal of
            [3]   COSTA D C, SOLDATI A L, BENGOA J F, et al. Phosphorus as a   aromatic pollutants: Insight into adsorption performance  and
                 promoter of a nickel catalyst to obtain  1-phenylethanol  from   mechanism[J]. Chemical Engineering Journal, 2020, 387: 124020.
                 chemoselective hydrogenation of  acetophenone[J]. Heliyon, 2019,   [18]  ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose
                 5(6): e01859.                                     nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
            [4]   ZHOU  L Q, LIANG Q H, CHAI K G, et  al. A cost-effective   [19]  YANG  G F, LIN  N, LI  Y,  et al. Preparation  of a novel cellulose-
                 β-cyclodextrin  polymer for selective adsorption and separation  of   styrene copolymer adsorbent and its adsorption of nitrobenzene from
                 acetophenone and  1-phenylethanol  via  specific noncovalent molecular   aqueous solutions[J]. Polymers, 2021, 13(4): 609.
                 interactions[J]. Reactive and Functional Polymers, 2020, 146: 104448.   [20]  HOU L M, BIAN H, WANG Q L, et al. Direct functionalization of
            [5]   DONG F, YANG Z Y, BALDERMANN S, et al. Characterization of   cellulose nanocrystals with polymer brushes  via UV-induced
                 L-phenylalanine metabolism to acetophenone and 1-phenylethanol in   polymerization: Access to novel heterogeneous visible-light
                 the flowers of  Camellia sinensis  using stable isotope labeling[J].   photocatalysts[J]. RSC Advances, 2016, 6(58): 53062-53068.
                 Journal of Plant Physiology, 2012, 169(3): 217-225.   [21]  WANG X M, CHEN L M, LIU Y N, et al. Macroporous crosslinked
            [6]   HOKKANEN S,  BHATNAGAR A, SILLANPAA M. A  review on   polydivinylbenzene/polyacryldiethylenetriamine (PDVB/PADETA)
                 modification methods  to cellulose-based adsorbents to improve   interpenetrating polymer networks (IPNs) and their efficient
                 adsorption capacity[J]. Water Research, 2016, 91: 156-173.   adsorption to  o-aminobenzoic acid  from aqueous solutions[J]. J
            [7]   Li G Y, CHAI K G,  ZHOU  L Q,  et al. Easy fabrication of   Colloid Interface Sci, 2014, 429: 83-87.
                 aromatic-rich cellulose-urethane polymer for preferential adsorption   [22]  ABBOTT L J, COLINA C M. Atomistic structure generation and gas
                 of acetophenone over 1-phenylethanol[J]. Carbohydrate Polymers,   adsorption simulations of microporous  polymer networks[J].
                 2019, 206: 716-725.                               Macromolecules, 2011, 44(11): 4511-4519.
            [8]   BADRUDDOZA  A Z M, SHAWON  Z B Z, TAY W J  D,  et al.   [23]  LUO Y L, LI B Y, WANG W,  et al. Hypercrosslinked aromatic
                 Fe 3O 4/cyclodextrin polymer nanocomposites for selective heavy   heterocyclic microporous polymers: A new class of highly selective
                 metals removal from industrial wastewater[J]. Carbohydrate Polymers,   CO 2 capturing materials[J]. Advanced Materials, 2012, 24(42):
                 2013, 91(1): 322-332.                             5703-5707.
            [9]   CHAI K G, JI H B. Inclusive separation of acetophenone from   [24]  LI Q Y, ZHAN Z, JIN S B, et al. Wettable magnetic hypercrosslinked
                 petrochemical by-product with  1-phenylethanol  via  noncovalent   microporous  nanoparticle as an efficient adsorbent  for water
                 interactions[J]. AICHE Journal, 2014, 60(8): 2962-2975.   treatment[J]. Chemical Engineering Journal, 2017, 326: 109-116.
            [10]  JIA S Y, TANG  D Y, PENG J,  et al.  β-Cyclodextrin modified   [25]  MATE C J, MISHRA S. Synthesis of borax cross-linked Jhingan gum
                 electrospinning fibers with good regeneration for efficient   hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye
                 temperature-enhanced adsorption  of crystal violet[J]. Carbohydrate   from water: Adsorption isotherm, kinetic, thermodynamic and
                 Polymers, 2019, 208: 486-494.                     biodegradation studies[J]. International Journal of  Biological
            [11]  HU  X Z, ZOU C J,  ZOU X  M. The  formation  of  supramolecular   Macromolecules, 2020, 151: 677-690.
                 carbon nanofiber  via amidation reaction on the surface of amino   [26]  GANG K Y (刚恺悦), ZHANG B H (张宝浩), MA N (马宁), et al.
                 single walled carbon nanotubes for  selective adsorption organic   Supramolecular gel based on selective adsorption of dyes by
                 pollutants[J]. Journal of Colloid  and Interface Science, 2019, 542:   electrostatic  action[J]. Fine Chemicals  (精细化工), 2022, 39  (11):
                 112-122.                                          2328-2336.
            [12]  GAO N, YANG J L, WU Y F, et al. β-Cyclodextrin functionalized   [27]  HU S Q (胡世琴), YANG B (杨斌), FAN J (范甲), et al. Adsorption
                 coaxially electrospun poly (vinylidene fluoride)@ polystyrene   behavior of amino functionalized tobacco biochar on U (Ⅵ ) in
                 membranes with  higher mechanical performance for efficient   wastewater[J]. Fine Chemicals ( 精 细化工 ), 2021, 38 (12):
                 removal of phenolphthalein[J]. Reactive and Functional Polymers,   2566-2572.
                 2019, 141: 100-111.                           [28]  LYU Y X (吕雅鑫), WANG  Y W (王亚威), FENG  Y (封严),
            [13]  TANG P X, SUN Q M, ZHAO L D, et al. A simple and green method   Preparation of etherified modified wheat lees adsorbent and its
                 to construct cyclodextrin polymer for the effective and simultaneous   adsorption of methylene blue[J]. Fine Chemicals (精细化工), 2021,
                 estrogen pollutant and  metal removal[J]. Chemical  Engineering   38(4): 830-837.
                 Journal, 2019, 366: 598-607.                  [29]  TENG W, BAI N, CHEN Z H, et al. Hierarchically porous carbon
            [14]  ZHAO J, LIU T T, CHEN G. An effective β-cyclodextrin polyurethane   derived from  metal-organic frameworks for separation of aromatic
                 spherical adsorbent for the chromatographic enrichment of corilagin    pollutants[J]. Chemical Engineering Journal, 2018, 346: 388-396.
   176   177   178   179   180   181   182   183   184   185   186