Page 73 - 《精细化工》2023年第6期
P. 73
第 6 期 李吉焱,等: 太阳能驱动大气集水:进展与展望 ·1223·
际应用中常用的材料。复合材料类吸湿材料是利用 1963.
[5] LI J Y (李吉焱), JING Y J (景艳菊), XING G Y (邢郭宇), et al.
材料本身的独特三维网络结构或化学键的交联作用
Research progress of salt-resistant solar interface photothermal
削弱单一吸湿材料对整体材料的劣势影响,同时综 materials and evaporators[J/OL]. Chemical Industry and Engineering
合或放大其他材料的优异性能,使之在各方面均能 Progress ( 化工 进展 ), 2022. DOI: 10.16085/j.issn.1000-6613.
2020-1732
满足 SAWH 的要求。此外,分析了不同 SAWH 系 [6] LI J Y, JING Y J, XING G Y, et al. Solar-driven interfacial
统,通过在吸附脱附上限、冷凝效果、光热转换效 evaporation for water treatment: Advanced research progress and
challenges[J]. Journal of Materials Chemistry A, 2022, 10(36):
率等方面对集水装置进行设计和改进。 18470-18489.
尽管 SAWH 已经取得了巨大进展,但仍有一些 [7] EJEIAN M, ENTEZARI A, WANG R Z. Solar powered atmospheric
water harvesting with enhanced LiCl/MgSO 4/ACF composite[J].
问题和挑战需要从基本认识和实际应用的角度加以
Applied Thermal Engineering, 2020, 176: 115396.
解决,基于对 SAWH 技术的全面梳理,建议未来的 [8] KIM H, RAO S R, KAPUSTIN E A, et al. Adsorption-based
atmospheric water harvesting device for arid climates[J]. Nature
研究方向应深入探讨以下 4 个方面问题:
Communications, 2018, 9: 1191.
(1)吸湿材料的高吸水能力归因于大的比表面 [9] NI F, QIU N X, XIAO P, et al. Tillandsia-inspired hygroscopic
积和孔体积,但固体材料(沸石等)因孔体积的限 photothermal organogels for efficient atmospheric water harvesting[J].
Angewandte Chemie International Edition, 2020, 59(43): 19237-19246.
制阻碍了吸收率的提高,因此,协调吸湿材料的孔 [10] QI H S, WEI T Q, ZHAO W, et al. An interfacial solar-driven
性能、溶胀能力、亲水基团的数量等参数是突破吸 atmospheric water generator based on a liquid sorbent with simultaneous
adsorption-desorption[J]. Advanced Materials, 2019, 31(43): 1903378.
湿性能的关键。另外,从应用的角度来看,吸附水 [11] SRIVASTAVA S, YADAV A. Extraction of water particles from
的 脱附非 常重 要,若 所报 道材料 的再 生温 度 atmospheric air through a scheffler reflector using different solid
desiccants[J]. International Journal of Ambient Energy, 2018, 41(12):
>110 ℃,靠太阳能对吸附水进行充分解吸仍具有一 1357-1369.
定的难度; [12] WANG J Y, WANG R Z, TU Y D, et al. Universal scalable
sorption-based atmosphere water harvesting[J]. Energy, 2018, 165:
(2)依靠太阳能的集水系统普遍以夜间吸附、
387-395.
白天解吸的循环模式进行,但目前对吸湿材料的水 [13] WU Q N, SU W, LI Q Q, et al. Enabling continuous and improved
热稳定性研究不足,吸湿材料的吸附能力有时会随 solar-driven atmospheric water harvesting with Ti 3C 2-incorporated
metal-organic framework monoliths[J]. ACS Applied Materials &
时间的变化呈指数形式衰减,导致吸湿材料固有的 Interfaces, 2021, 13(32): 38906-38915.
吸附时间尺度与每日周期不一致,因此,调节产水 [14] CHUA H T, NG K C, MALEK A, et al. Modeling the performance of
two-bed, sillica gel-water adsorption chillers[J]. International Journal
周期,如一天内使用多个集水周期,将加快 SAWH of Refrigeration, 1999, 22(3): 194-204.
技术的应用步伐; [15] SAHA B B, KOYAMA S, LEE J B, et al. Performance evaluation of
a low-temperature waste heat driven multi-bed adsorption chiller[J].
(3)目前的大气集水装置在解吸水的过程中, International Journal of Multiphase Flow, 2003, 29(8): 1249-1263.
通常需要将吸湿材料放置在冷凝罩下,以蒸气的形 [16] SHIVANNA M, BEZRUKOV A A, GASCON-PEREZ V, et al.
Flexible coordination network exhibiting water vapor-induced reversible
式附着在冷凝罩的内壁上形成水滴,但水滴和蒸气
switching between closed and open phases[J]. ACS Appl Mater
的产生会阻碍阳光在吸湿材料表面的照射,降低太 Interfaces, 2022, 14(34): 39560-39566.
[17] SRIVASTAVA N C, EAMES I W. A review of adsorbents and
阳能的利用率,如何解决这一瓶颈对 SAWH 的推广
adsorbates in solid-vapour adsorption heat pump systems[J]. Applied
应用具有重要意义; Thermal Engineering, 1998, 18(9/10): 707-714.
(4)由于缺乏 SAWH 的长期稳定性和大规模实 [18] KATO Y, YAMADA M, KANIE T, et al. Calcium oxide/carbon
dioxide reactivity in a packed bed reactor of a chemical heat pump
施研究,且目前的研究中,每天的水生产力仍然不 for high-temperature gas reactors[J]. Nuclear Engineering and
能满足广泛的用水需求。因此,将可扩展的 SAWH Design, 2001, 210(1/2/3): 1-8.
[19] DENG F F, XIANG C J, WANG C X, et al. Sorption-tree with
部署到实际商业和工业层面仍具有需克服的问题和 scalable hygroscopic adsorbent-leaves for water harvesting[J].
巨大的障碍。 Journal of Materials Chemistry A, 2022, 10(12): 6576-6586.
[20] SÖGÜTOGLU L C, STEIGER M, HOUBEN J, et al. Understanding
参考文献: the hydration process of salts: The impact of a nucleation barrier[J].
Crystal Growth & Design, 2019, 19(4): 2279-2288.
[1] SALEHI M. Global water shortage and potable water safety: Today's [21] VAINIO E, DEMARTINI N, HUPA L, et al. Hygroscopic properties
concern and tomorrow's crisis[J]. Environment International, 2022, of calcium chloride and its role on cold-end corrosion in biomass
158: 106936. combustion[J]. Energy & Fuels, 2019, 33(11): 11913-11922.
[2] HE C Y, LIU Z F, WU J G, et al. Future global urban water scarcity and [22] ELASHMAWY M, ALSHAMMARI F. Atmospheric water
potential solutions[J]. Nature Communications, 2021, 12(1): 1-11. harvesting from low humid regions using tubular solar still powered
[3] MALIK F T, CLEMENT R M, GETHIN D T, et al. Nature's moisture by a parabolic concentrator system[J]. Journal of Cleaner Production,
harvesters: A comparative review[J]. Bioinspiration & Biomimetics, 2020, 256: 120329.
2014, 9(3): 031002. [23] GIBSON E R, HUDSON P K, GRASSIAN V H. Aerosol chemistry
[4] LI J Y (李吉焱), LIU M C (刘美辰), JING Y J (景艳菊), et al. Solar and climate: Laboratory studies of the carbonate component of
interface evaporation synergistic power generation: Progress and mineral dust and its reaction products[J]. Geophysical Research
prospect[J]. Fine Chemicals (精细化工), 2022, 39(10): 1945-1952, Letters, 2006, 33(13): L13811.