Page 73 - 《精细化工》2023年第6期
P. 73

第 6 期                         李吉焱,等:  太阳能驱动大气集水:进展与展望                                   ·1223·


            际应用中常用的材料。复合材料类吸湿材料是利用                                 1963.
                                                               [5]   LI J Y (李吉焱), JING Y J (景艳菊),  XING G Y  (邢郭宇), et al.
            材料本身的独特三维网络结构或化学键的交联作用
                                                                   Research progress of salt-resistant  solar interface photothermal
            削弱单一吸湿材料对整体材料的劣势影响,同时综                                 materials and evaporators[J/OL]. Chemical Industry and Engineering
            合或放大其他材料的优异性能,使之在各方面均能                                 Progress ( 化工 进展 ), 2022. DOI: 10.16085/j.issn.1000-6613.
                                                                   2020-1732
            满足 SAWH 的要求。此外,分析了不同 SAWH 系                        [6]   LI J  Y, JING Y  J, XING G  Y, et  al. Solar-driven interfacial
            统,通过在吸附脱附上限、冷凝效果、光热转换效                                 evaporation for water treatment: Advanced research progress and
                                                                   challenges[J]. Journal of Materials Chemistry A, 2022, 10(36):
            率等方面对集水装置进行设计和改进。                                      18470-18489.
                 尽管 SAWH 已经取得了巨大进展,但仍有一些                       [7]   EJEIAN M, ENTEZARI A, WANG R Z. Solar powered atmospheric
                                                                   water harvesting  with enhanced LiCl/MgSO 4/ACF composite[J].
            问题和挑战需要从基本认识和实际应用的角度加以
                                                                   Applied Thermal Engineering, 2020, 176: 115396.
            解决,基于对 SAWH 技术的全面梳理,建议未来的                          [8]   KIM H,  RAO S  R, KAPUSTIN  E A, et  al. Adsorption-based
                                                                   atmospheric water harvesting device for arid climates[J]. Nature
            研究方向应深入探讨以下 4 个方面问题:
                                                                   Communications, 2018, 9: 1191.
                (1)吸湿材料的高吸水能力归因于大的比表面                          [9]   NI F, QIU N X,  XIAO P, et  al. Tillandsia-inspired hygroscopic
            积和孔体积,但固体材料(沸石等)因孔体积的限                                 photothermal organogels for efficient atmospheric water harvesting[J].
                                                                   Angewandte Chemie International Edition, 2020, 59(43): 19237-19246.
            制阻碍了吸收率的提高,因此,协调吸湿材料的孔                             [10]  QI H S, WEI T  Q, ZHAO W, et al. An interfacial solar-driven
            性能、溶胀能力、亲水基团的数量等参数是突破吸                                 atmospheric water generator based on a liquid sorbent with simultaneous
                                                                   adsorption-desorption[J]. Advanced Materials, 2019, 31(43): 1903378.
            湿性能的关键。另外,从应用的角度来看,吸附水                             [11]  SRIVASTAVA S, YADAV A. Extraction of water particles from
            的 脱附非 常重 要,若 所报 道材料 的再 生温 度                            atmospheric air through a scheffler reflector using different solid
                                                                   desiccants[J]. International Journal of Ambient Energy, 2018, 41(12):
            >110 ℃,靠太阳能对吸附水进行充分解吸仍具有一                              1357-1369.
            定的难度;                                              [12]  WANG J  Y, WANG R Z, TU Y  D, et al. Universal scalable
                                                                   sorption-based atmosphere water harvesting[J]. Energy, 2018, 165:
                (2)依靠太阳能的集水系统普遍以夜间吸附、
                                                                   387-395.
            白天解吸的循环模式进行,但目前对吸湿材料的水                             [13]  WU Q N, SU W, LI Q Q, et al. Enabling continuous and improved
            热稳定性研究不足,吸湿材料的吸附能力有时会随                                 solar-driven atmospheric water harvesting with Ti 3C 2-incorporated
                                                                   metal-organic framework monoliths[J].  ACS  Applied Materials &
            时间的变化呈指数形式衰减,导致吸湿材料固有的                                 Interfaces, 2021, 13(32): 38906-38915.
            吸附时间尺度与每日周期不一致,因此,调节产水                             [14]  CHUA H T, NG K C, MALEK A, et al. Modeling the performance of
                                                                   two-bed, sillica gel-water adsorption chillers[J]. International Journal
            周期,如一天内使用多个集水周期,将加快 SAWH                               of Refrigeration, 1999, 22(3): 194-204.
            技术的应用步伐;                                           [15]  SAHA B B, KOYAMA S, LEE J B, et al. Performance evaluation of
                                                                   a low-temperature waste heat driven multi-bed adsorption chiller[J].
                (3)目前的大气集水装置在解吸水的过程中,                              International Journal of Multiphase Flow, 2003, 29(8): 1249-1263.
            通常需要将吸湿材料放置在冷凝罩下,以蒸气的形                             [16]  SHIVANNA  M, BEZRUKOV A A, GASCON-PEREZ V, et al.
                                                                   Flexible coordination network exhibiting water vapor-induced reversible
            式附着在冷凝罩的内壁上形成水滴,但水滴和蒸气
                                                                   switching between closed and open phases[J]. ACS Appl Mater
            的产生会阻碍阳光在吸湿材料表面的照射,降低太                                 Interfaces, 2022, 14(34): 39560-39566.
                                                               [17]  SRIVASTAVA N  C, EAMES I W. A review of adsorbents and
            阳能的利用率,如何解决这一瓶颈对 SAWH 的推广
                                                                   adsorbates in solid-vapour adsorption heat pump systems[J]. Applied
            应用具有重要意义;                                              Thermal Engineering, 1998, 18(9/10): 707-714.
                (4)由于缺乏 SAWH 的长期稳定性和大规模实                       [18]  KATO Y, YAMADA M,  KANIE T, et al. Calcium oxide/carbon
                                                                   dioxide reactivity in a packed bed reactor of a chemical heat pump
            施研究,且目前的研究中,每天的水生产力仍然不                                 for  high-temperature gas reactors[J]. Nuclear Engineering and
            能满足广泛的用水需求。因此,将可扩展的 SAWH                               Design, 2001, 210(1/2/3): 1-8.
                                                               [19]  DENG F F,  XIANG C J,  WANG C  X, et al. Sorption-tree with
            部署到实际商业和工业层面仍具有需克服的问题和                                 scalable hygroscopic adsorbent-leaves for water harvesting[J].
            巨大的障碍。                                                 Journal of Materials Chemistry A, 2022, 10(12): 6576-6586.
                                                               [20]  SÖGÜTOGLU L C, STEIGER M, HOUBEN J, et al. Understanding
            参考文献:                                                  the hydration process of salts: The impact of a nucleation barrier[J].
                                                                   Crystal Growth & Design, 2019, 19(4): 2279-2288.
            [1]   SALEHI M. Global water shortage and potable water safety: Today's   [21]  VAINIO E, DEMARTINI N, HUPA L, et al. Hygroscopic properties
                 concern and tomorrow's crisis[J]. Environment International, 2022,   of calcium chloride and its role on cold-end corrosion in biomass
                 158: 106936.                                      combustion[J]. Energy & Fuels, 2019, 33(11): 11913-11922.
            [2]   HE C Y, LIU Z F, WU J G, et al. Future global urban water scarcity and   [22]  ELASHMAWY  M, ALSHAMMARI F. Atmospheric water
                 potential solutions[J]. Nature Communications, 2021, 12(1): 1-11.   harvesting from low humid regions using tubular solar still powered
            [3]   MALIK F T, CLEMENT R M, GETHIN D T, et al. Nature's moisture   by a parabolic concentrator system[J]. Journal of Cleaner Production,
                 harvesters: A comparative review[J]. Bioinspiration & Biomimetics,   2020, 256: 120329.
                 2014, 9(3): 031002.                           [23]  GIBSON E R, HUDSON P K, GRASSIAN V H. Aerosol chemistry
            [4]   LI J Y (李吉焱), LIU M C (刘美辰), JING Y J (景艳菊), et al. Solar   and climate:  Laboratory studies of the carbonate component of
                 interface evaporation  synergistic  power generation: Progress and   mineral dust and its reaction products[J]. Geophysical Research
                 prospect[J]. Fine Chemicals (精细化工), 2022, 39(10): 1945-1952,   Letters, 2006, 33(13): L13811.
   68   69   70   71   72   73   74   75   76   77   78