Page 74 - 《精细化工》2023年第6期
P. 74
·1224· 精细化工 FINE CHEMICALS 第 40 卷
[24] JING B, WANG Z, TAN F, et al. Hygroscopic behavior of metal-organic frameworks powered by natural sunlight[J]. Science,
atmospheric aerosols containing nitrate salts and water-soluble 2017, 356(6336): 430-434.
organic acids[J]. Atmospheric Chemistry and Physics, 2018, 18(7): [44] HANIKEL N, PRÉVOT M S, FATHIEH F, et al. Rapid cycling and
5115-5127. exceptional yield in a metal-organic framework water harvester[J].
[25] GUO L Y, GU W J, PENG C, et al. A comprehensive study of ACS Central Science, 2019, 5(10): 1699-1706.
hygroscopic properties of calcium- and magnesium-containing salts: [45] CONG S Z, YUAN Y, WANG J X, et al. Highly water-permeable
Implication for hygroscopicity of mineral dust and sea salt metal-organic framework MOF-303 membranes for desalination[J].
aerosols[J]. Atmospheric Chemistry and Physics, 2019, 19(4): Journal of the American Chemical Society, 2021, 143(48): 20055-
2115-2133. 20058.
[26] ZHAO H Z, LEI M, LIU T, et al. Synthesis of composite material [46] LI Z Q, YANG J C, SUI K W, et al. Facile synthesis of metal-
HKUST-1/LiCl with high water uptake for water extraction from organic framework MOF-808 for arsenic removal[J]. Materials
atmospheric air[J]. Inorganica Chimica Acta, 2020, 511: 119842. Letters, 2015, 160: 412-414.
[27] YI X Q (易晓勤), LIU X H (刘晓华). Comparison of dehumidification [47] LOGAN M W, LANGEVIN S, XIA Z Y. Reversible atmospheric
performance of two liquid absorbents[J]. Chinese Science Paper water harvesting using metal-organic frameworks[J]. Scientific
Online (中国科技论文在线), 2009, 4(7): 522-526. Reports, 2020, 10(1): 1-11.
[28] SRIVASTAVA S, YADAV A. Water generation from atmospheric air [48] ZHAO H Z, LI Q W, WANG Z Y, et al. Synthesis of MIL-101(Cr)
by using composite desiccant material through fixed focus concentrating and its water adsorption performance[J]. Microporous and Mesoporous
solar thermal power[J]. Solar Energy, 2018, 169: 302-315. Materials, 2020, 297: 110044.
[29] MASTRONARDO E, PIPEROPOULOS E, PALAMARA D, et al. [49] CELESTE A, PAOLONE A, ITIÉ J P, et al. Mesoporous metal-
Morphological observation of LiCl deliquescence in PDMS-based organic framework MIL-101 at high pressure[J]. Journal of the
composite foams[J]. Applied Sciences, 2022, 12(3): 1510. American Chemical Society, 2020, 142(35): 15012-15019.
[30] XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water [50] LI R Y, SHI Y, ALSAEDI M, et al. Hybrid hydrogel with high water
harvesting from arid air with metal-organic frameworks modified by vapor harvesting capacity for deployable solar-driven atmospheric
hygroscopic salt[J]. Angewandte Chemie International Edition, 2020, water generator[J]. Environmental Science & Technology, 2018,
59(13): 5202-5210. 52(19): 11367-11377.
[31] WANG M Z, SUN T M, WAN D H, et al. Solar-powered [51] ALEID S, WU M C, LI R Y, et al. Salting-in effect of zwitterionic
nanostructured biopolymer hygroscopic aerogels for atmospheric polymer hydrogel facilitates atmospheric water harvesting[J]. ACS
water harvesting[J]. Nano Energy, 2021, 80: 105569. Materials Letters, 2022, 4(3): 511-520.
[32] ZHANG H H, GU W J, LI Y J, et al. Hygroscopic properties of [52] ENTEZARI A, EJEIAN M, WANG R Z. Super atmospheric water
sodium and potassium salts as related to saline mineral dusts and sea harvesting hydrogel with alginate chains modified with binary
salt aerosols[J]. Journal of Environmental Sciences, 2020, 95: 65-72. salts[J]. ACS Materials Letters, 2020, 2(5): 471-477.
[33] LI R Y, SHI Y, SHI L, et al. Harvesting water from air: Using [53] ZHAO F, ZHOU X Y, LIU Y, et al. Super moisture-absorbent gels for
anhydrous salt with sunlight[J]. Environmental Science & Technology, all-weather atmospheric water harvesting[J]. Advanced Materials,
2018, 52(9): 5398-5406. 2019, 31(10): 1806446.
[34] YUAN Y P, ZHANG H Q, YANG F, et al. Inorganic composite [54] ZHANG Y Z, HE T, KONG X J, et al. Tuning water sorption in
sorbents for water vapor sorption: A research progress[J]. Renewable highly stable Zr( Ⅳ )-metal-organic frameworks through local
and Sustainable Energy Reviews, 2016, 54: 761-776. functionalization of metal clusters[J]. ACS Applied Materials &
[35] WANG L W, WANG R Z, OLIVEIRA R G. A review on adsorption Interfaces, 2018, 10(33): 27868-27874.
working pairs for refrigeration[J]. Renewable and Sustainable Energy [55] TANG S Y, WANG Y S, YUAN Y F, et al. Hydrophilic carbon
Reviews, 2009, 13(3): 518-534. monoliths derived from metal-organic frameworks@resorcinol-
[36] MULCHANDANI A, WESTERHOFF P. Geospatial climatic factors formaldehyde resin for atmospheric water harvesting[J]. New Carbon
influence water production of solar desiccant driven atmospheric Materials, 2022, 37(1): 237-244.
water capture devices[J]. Environmental Science & Technology, [56] WU E Y (武恩宇), QIAN G D (钱国栋), LI B (李斌). Water
2020, 54(13): 8310-8322. adsorption properties of aluminum-based metal-organic frameworks
[37] TRAPANI F, POLYZOIDIS A, LOEBBECKE S, et al. On the and application in atmospheric water collection[J]. Journal of
general water harvesting capability of metal-organic frameworks Zhejiang University (浙江大学学报), 2022, 56(1): 186-192.
under well-defined climatic conditions[J]. Microporous and Mesoporous [57] TIAN Z R, TONG W, WANG J Y, et al. Manganese oxide mesoporous
Materials, 2016, 230: 20-24. structures: Mixed-valent semiconducting catalysts[J]. Science, 1997,
[38] TEO H W B, CHAKRABORTY A, FAN W. Improved adsorption 276(5314): 926-930.
characteristics data for AQSOA types zeolites and water systems [58] WANG J L, DANG Y L, MEGUERDICHIAN A G, et al. Water
under static and dynamic conditions[J]. Microporous and Mesoporous harvesting from the atmosphere in arid areas with manganese
Materials, 2017, 242: 109-117. dioxide[J]. Environmental Science & Technology Letters, 2019, 7(1):
[39] ESSA F A, ELSHEIKH A H, SATHYAMURTHY R, et al. Extracting 48-53.
water content from the ambient air in a double-slope half-cylindrical [59] ZHOU X Y, LU H Y, ZHAO F, et al. Atmospheric water harvesting:
basin solar still using silica gel under egyptian conditions[J]. A review of material and structural designs[J]. ACS Materials
Sustainable Energy Technologies and Assessments, 2020, 39: 100712. Letters, 2020, 2(7): 671-684.
[40] SLEITI A K, AL-KHAWAJA H, AL-KHAWAJA H, et al. Harvesting [60] HE J T, LI N, WANG S X, et al. Hygroscopic photothermal beads
water from air using adsorption material-Prototype and experimental from marine polysaccharides: Demonstration of efficient atmospheric
results[J]. Separation and Purification Technology, 2021, 257: 117921. water production, indoor humidity control and photovoltaic panel
[41] GORDEEVA L G, GREKOVA A D, KRIEGER T A, et al. Adsorption cooling[J]. Journal of Materials Chemistry A, 2022, 10(15): 8556-
properties of composite materials (LiCl+LiBr)/silica[J]. Microporous 8567.
and Mesoporous Materials, 2009, 126(3): 262-267. [61] WU M C, LI R Y, SHI Y, et al. Metal- and halide-free, solid-state
[42] RYU U, JEE S, RAO P C, et al. Recent advances in process polymeric water vapor sorbents for efficient water-sorption-driven
engineering and upcoming applications of metal-organic frameworks[J]. cooling and atmospheric water harvesting[J]. Materials Horizons,
Coord Chem Rev, 2021, 426: 213544. 2021, 8(5): 1518-1527.
[43] KIM H, YANG S, RAO S R, et al. Water harvesting from air with (下转第 1293 页)