Page 40 - 《精细化工》2023年第8期
P. 40
·1654· 精细化工 FINE CHEMICALS 第 40 卷
review[J]. Journal of Molecular Liquids, 2021, 334: 116441. character[J]. Dyes and Pigments, 2009, 80(1): 67-72.
[2] MITRA K, HARTMAN M C T. Silicon phthalocyanines: Synthesis [21] VAN NOSTRUM C F, PICKEN S J, SCHOUTEN A J, et al.
and resurgent applications[J]. Organic & Biomolecular Chemistry, Synthesis and supramolecular chemistry of novel liquid crystalline
2021, 19(6): 1168-1190. crown ether-substituted phthalocyanines: Toward molecular wires
[3] KONG X F (孔翔飞), YAO W (姚威), DAI S P (戴胜平), et al. and molecular ionoelectronics[J]. Journal of the American Chemical
Research progress of intermolecular self-assembly discoid liquid Society, 1995, 117(40): 9957-9965.
crystal materials[J]. Fine Chemicals (精细化工), 2018, 35(3): 361-371. [22] WANG J Y, PAN L, ZHOU X F, et al. Dendritic copper phthalocyanine
[4] BUKUROSHI E, MIZRAHI A, GROSS Z, et al. Variables of the with aggregation induced blue emission and solid-state fluorescence
analytical electrochemical data acquisition for boron subphthalocyanines [J]. Chemical Physics Letters, 2016, 660(9): 143-148.
[J]. European Journal of Inorganic Chemistry, 2021, 2021(11): 1090-1097. [23] KONG X F (孔翔飞), YU J W (俞建文), GONG H K (宫宏康),
[5] GOK H Z, GOK Y, YILMAZ M K. Oxidation of benzyl alcohol by et al. Research progress of liquid crystal materials with aggregation
novel peripherally and non-peripherally modular C2-symmetric diol induced luminescence[J]. Fine Chemicals (精细化工), 2019, 36(2):
substituted cobalt (Ⅱ) phthalocyanines[J]. Applied Organometallic 181-189.
Chemistry, 2020, 34(8): 5669. [24] YATABE M, KAJITANI A, YASUTAKE M, et al. Discotic liquid
[6] MAYORAL M J, GUILLEME J, CALBO J, et al. Dual-mode chiral crystals of transition metal complexes, 55: Novel chlorine-substituted
self-assembly of cone-shaped subphthalocyanine aromatics[J]. Journal phthalocyanine derivatives showing mesomorphism and low HOMO
of the American Chemical Society, 2020, 142(50): 21017-21031. energy level[J]. Journal of Porphyrins and Phthalocyanines, 2018,
[7] KLYAMER D D, BASOVA T V. Effect of the structural features of 22(3): 32-45.
metal phthalocyanine films on their electrophysical properties[J]. [25] NAKANO M, OSAKA I, HASHIZUME D, et al. A-modified
Journal of Structural Chemistry, 2022, 63(7): 997-1018. naphthodithiophene diimides-molecular design strategy for air-stable
[8] YAMAOKA R, FUNAHASHI M. Liquid-crystalline phthalocyanine n-channel organic semiconductors[J]. Chemistry of Materials, 2015,
derivatives bearing oligosiloxane moieties: Soft columnar mesophases 27(18): 6418-6425.
stabilized by nanosegregation[J]. Chemistry Select, 2017, 2(36): [26] FOURMIGUE M, BATAIL P. Activation of hydrogen-and halogen-
11934-11941. bonding interactions in tetrathiafulvalene-based crystalline molecular
[9] INCHARA S A, VEERABHADRASWAMY B N, PAUL B, et al. conductors[J]. Chemical Reviews, 2004, 104(11): 5379-5418.
Supramolecular self-assembly properties of metallo-ionic phthalocyanines [27] NGUYEN H L, HORTON P N, HURSTHOUSE M B, et al. Halogen
constituting regioisomers[J]. Chemistry Select, 2020, 5(32): 10106-10113. bonding: A new interaction for liquid crystal formation[J]. Journal of
[10] KONG S W, WANG X D, BAI L, et al. Multi-arm ionic liquid the American Chemical Society, 2004, 126(1): 16-17.
crystals formed by pyridine-mesophase and copper phthalocyanine [28] HEINRICH C D, KOSTAKOULU S T, THELAKKAT M. Densely
[J]. Journal of Molecular Liquids, 2019, 288: 111012. grafted liquid crystalline copper phthalocyanine side chain polymer:
[11] CAO W, SENTHILKUMAR B, CAUSIN V, et al. Influence of the Synthesis and characterization[J]. Journal of Materials Chemistry C,
ion size on the stability of the smectic phase of ionic liquid 2017, 5(25): 6259-6268.
crystals[J]. Soft Matter, 2020, 16(2): 411-420. [29] BECHTOLD I H, ECCHER J, FARIA G C, et al. New columnar
[12] FENG C, RAIJAPAKSHA C P H, CEDILLO J M, et al. Zn-phthalocyanine designed for electronic applications[J]. The
Electroresponsive ionic liquid crystal elastomers[J]. Macromolecular Journal of Physical Chemistry B, 2012, 116(45): 13554-13560.
Rapid Communications, 2019, 40(19): 1900299. [30] CANIMKURBEY B, TASKAN M C, DEMIR S, et al. Synthesis and
[13] SONG Y, WANG J W, YAN G Y, et al. Self-assembly and investigation of the electrical properties of novel liquid-crystal
adjustableion conducting behavior of graphene oxide liquid crystalline phthalocyanines bearing triple branched alkylthia chains[J]. New
network membranes[J]. Macromolecular Materials and Engineering, Journal of Chemistry, 2020, 44(18): 7424-7435.
2020, 305(1): 1900551. [31] ZHOU J D, YAN G Y, WANG J W, et al. Self-assembly and ionic
[14] RUAN L X, TONG J W, LUO F F, et al. Discrete resistive switching conductivity of phthalocyanine-containing liquid-crystalline compound
characteristics in metal-free phthalocyanine and Dy-phthalocyanine films[J]. Thin Solid Films, 2020, 709: 138148.
based devices[J]. Materials Today Communications, 2022, 30: 103131. [32] SHI J W, LUAN L Q, FANG W J, et al. High-sensitive low-temperature
[15] OZAKI M, YONEVA M, SHIMIZU Y, et al. Carrier transport and NO 2 sensor based on Zn (Ⅱ) phthalocyanine with liquid crystalline
device applications of the organic semiconductor based on liquid properties[J]. Sensors and Actuators B: Chemical, 2014, 204: 218-223.
crystalline non-peripheral octaalkyl phthalocyanine[J]. Liquid Crystals, [33] LEHMANN M, DECHANT M. Click procedure of phthalocyanine
2018, 45(13/14/15): 2376-2389. star-shaped mesogens the effect of size and spacer length[J]. Liquid
[16] KUDO R, SONBE M, CHINO Y, et al. Stacking control by molecular Crystals, 2020, 47(8): 1214-1222.
symmetry of sterically protected phthalocyanines[J]. Molecules, 2020, [34] LEHMANN M, DECHANT M, UZURANO G, et al. The liquid
25(23): 5552. crystal click procedure for oligothiophene-tethered phthalocyanines-
[17] DONG S Q, BAO C, TIAN H K, et al. ABA-symmetric tetraalkyl self-assembly, alignment and photocurrent[J]. Journal of Materials
titanyl phthalocyanines for solution processed organic field-effect Chemistry C, 2021, 9(17): 5689-5698.
2
transistors with mobility approaching 1 cm /(V·s)[J]. Advanced Materials, [35] REHEMAN A, HU S, CAO L, et al. Liquid-crystalline behaviour
2013, 25(8): 1165-1169. and electrorheological effect of phthalocyanine-based ionic liquid
[18] MIYAKE Y, SHIRAIWA Y, OKADAK K, et al. High carrier mobility crystals[J]. Liquid Crystals, 2021, 48(9): 1321-1330.
2
up to 1.4 cm /(V·s) in non-peripheral octahexyl phthalocyanine[J]. [36] KONG W W, TANG X Q, CHANG X L, et al. Self-assembly and
Applied Physics Express, 2011, 4(2): 021604. molecular electrical switching property of phthalocyanine-based
[19] JORAID A A, AL-RAQA S Y. Kinetic and thermodynamic studies of liquid-crystalline poly(styrene sulfonic acid) compounds[J]. Macromolecular
phase transition from hexagonal to discotic liquid crystal in Materials and Engineering, 2021, 306(5): 2100009.
metal-free 1, 4, 8, 11, 15, 18, 22, 25-octahexylphthalocyanine[J]. [37] LI X, CHANG X L, ZHENG X M, et al. Self-assembly, liquid
Liquid Crystals, 2021, 48(12): 1709-1722. crystalline behavior and electrorheological performance of phthalocyanine-
[20] BASOVA T, JUSHINA I V, GUREK A G, et al. The synthesis and contaning polysiloxanes[J]. European Polymer Journal, 2021, 150: 110417.
characterization of Cu ( Ⅱ ) phthalocyanine bearing peripheral [38] BASOVA T V, HASSAN A, DURMUS M, et al. Orientation of the
monoazacrown ethers and a spectral investigation of its film forming liquid crystalline nickel phthalocyanine films confined between