Page 64 - 《精细化工》2023年第8期
P. 64
·1678· 精细化工 FINE CHEMICALS 第 40 卷
[24] ZHANG Y Q, LIUA G, ZHANG C H, et al. Low-cost MgFe xMn 2–xO 4 [43] DU A, ZHANG Z H, QU H T, et al. An efficient organic magnesium
cathode materials for high-performance aqueous rechargeable borate-based electrolyte with non-nucleophilic characteristics for
magnesium-ion batteries[J]. Chemical Engineering Journal, 2020, magnesium-sulfur battery[J]. Energy & Environmental Science,
392: 123652. 2017, 10: 2616-2625.
[25] NOVÁK P, IMHOF R, HAAS O. Magnesium insertion electrodes for [44] ZHANG Z H, DONG S, CUI Z, et al. Rechargeable magnesium
rechargeable nonaqueous batteries-A competitive alternative to batteries using conversion-type cathodes: A perspective and
lithium[J]. Electrochimica Acta, 1999, 45(1/2): 351-367. minireview[J]. Small Methods, 2018, 2: 1800020.
[26] ZHANG D L, CHEN Q, ZHANG J H, et al. MgMn 2O 4/multiwalled [45] ATTIAS R, SALAMA M, HIRSCH B, et al. Anode-electrolyte
carbon nanotubes composite fabricated by electrochemical interfaces in secondary magnesium batteries[J]. Joule, 2019, 3:
conversion as a high-performance cathode material for aqueous 27-52.
rechargeable magnesium ion battery[J]. Journal of Alloys and [46] REN W, CHENG M X, WANG Y R, et al. Boron-based electrolytes
Compounds, 2021, 873: 159872. for rechargeable magnesium batteries: Biography and perspective[J].
[27] LI Z Y, MU X K, ZHAO K Z, et al. Fast kinetics of multivalent Batteries & Supercaps, 2022, 5: 1-17.
intercalation chemistry enabled by solvated magnesium-ions into [47] SUN J C, ZOU Y B, GAO S Z, et al. Robust strategy of
self-established metallic layered materials[J]. Nature Communications, quasi-solid-state electrolytes to boost the stability and compatibility
2018, 5115(9): 1-13. of Mg ion batteries[J]. ACS Applied Materials & Interfaces, 2020,
[28] YOO H D, LIANG Y, DONG H, et al. Fast kinetics of magnesium 12: 54711-54719.
monochloride cations in interlayer-expanded titanium disulfide for [48] SHAO Y Y, RAJPUT N N, HU J Z, et al. Nanocomposite polymer
magnesium rechargeable batteries[J]. Nature Communications, 2017, electrolyte for rechargeable magnesium batteries[J]. Nano Energy,
339(8): 1-10. 2015, 12: 750-759.
[29] SOTOMURA T, UEMACHI H, TAKCYAMA K, et al. New [49] GOBECHIYA E R, SUKHANOV M V, PET'KOV V I, et al. Crystal
organodisulflde-polyaniline composite cathode for secondary lithium structure of the double magnesium zirconium orthophosphate at
battcry[J]. Electrochimica Acta, 1992, 37(10): 1851-1854. temperatures of 298 and 1023 K[J]. Crystallography Reports, 2008,
[30] YAO Y F (尧玉芬), CHEN C G (陈昌国), LIU Y P (刘渝萍), et al. 53(1): 55-60.
Research progress of magnesium battery[J]. Materials Reports (材料 [50] OMOTE A, YOTSUHASHI S, ZENITANI Y, et al. High ion conductivity
导报), 2009, 23 (19): 119-121. in MgHf(WO 4) 3 solids with ordered structure: 1-D alignments of
[31] KOKESTSU T, MA J, MORGAN B. J, BODY M, et al. Reversible Mg and Hf ions[J]. Journal of the American Ceramic Society,
4+
2+
magnesium and aluminum ions insertion in cation-deficient anatase 2011, 94(8): 2285-2288.
TiO 2[J]. Nature Materials, 2017, 16: 1142-1148. [51] HIGASHI S, MIWA K, AOKI M, et al. A novel inorganic solid state
[32] MORI T, MASESE T, ORIKASA Y, et al. Anti-site mixing governs ion conductor for rechargeable Mg batteries[J]. Chemical
the electrochemical performances of olivine-type MgMnSiO 4 cathodes Communications, 2014, 50(11): 1320-1322.
for rechargeable magnesium batteries[J]. Physical Chemistry Chemical [52] YAN Y G, DONONELLI W, JORGENSEN M, et al. The mechanism
Physic, 2016, 18: 13524-13529. of Mg conduction in ammine magnesium borohydride promoted by
2+
[33] FENG Z Z, YANG J, NULI Y, et al. Sol-gel synthesis of a neutral molecule[J]. Physical Chemistry Chemical Physics, 2020,
Mg 1.03Mn 0.97SiO 4 and its electrochemical intercalation behavior[J].
Journal of Power Sources, 2008, 184: 604-609. 22: 9204-9209.
[34] HEATH J, CHEN H, ISLAM M S. MgFeSiO 4 as a potential cathode [53] YAMANAKA T, HAYASHI A, YAMAUCHI A, et al. Preparation of
material for magnesium batteries: Ion diffusion rates and voltage magnesium ion conducting MgS-P 2S 5-MgI 2 glasses by a mechanochemical
trends[J]. Journal of Materials Chemistry A, 2017, 5: 13161-13167. technique[J]. Solid State Ionics, 2014, 262: 601.
[35] ORIKASA Y, OKADO T, ABE T, et al. High energy density [54] AUBREY M L, AMELOOT R, WIERS B M, et al. Metal-organic
rechargeable magnesium battery using earth-abundant and non-toxic frameworks as solid magnesium electrolytes[J]. Energy & Environmental
elements[J]. Scientific Reports, 2015, 4: 5622. Science, 2014, 7: 667-671. + 2+
[36] ZHENG Y P, NULI Y N, CHEN Q, et al. Magnesium cobalt silicate [55] MINER E M, PARK S S, DINCA M. High Li and Mg
materials for reversible magnesium ion storage[J]. Electrochim Acta, conductivity in a Cu-azolate metal-organic frame-work[J]. Journal of
2012, 66: 75-81. the American Chemical Society, 2019, 141: 4422.
[37] FENG Z Z, YANG J, NULI Y N, et al. Preparation and [56] WANG P W, TRÜCK J, HÄCKER J, et al. A design concept for
2+
+
electrochemical study of a new magnesium intercalation material halogen-free Mg /Li -dual salt-containing gel-polymer-electrolytes
Mg 1.03Mn 0.97SiO 4[J]. Electrochemistry Communications, 2008, 10: for rechargeable magnesium batteries[J]. Energy Storage Materials,
1291-1294. 2022, 49: 509-517.
[38] MAXIM A, ALEXANDER M, ANDREY V P. TiS 3 magnesium [57] JATHUSHAN V, JAYAMAHA J H T B, WIJAYASINGHE H W M A
battery material: Atomic-scale study of maximum capacity and C, et al. Electrochemical studies on poly(ethylene oxide) based
structural behavior[J]. Journal of Physical Chemistry C, 2017, 121: gel-polymer electrolytes for magnesium-ion batteries[J]. Materials
15509-15515. Science Forum, 2022, 1077: 229-234.
[39] DUFFORT V, SUN X Q, NAZAR L F. Screening for positive [58] WANG L P, LI Z Y, MENG Z, et al. Designing gel polymer
electrodes for magnesium batteries: A protocol for studies at elevated electrolyte with synergetic properties for rechargeable magnesium
temperatures[J]. Chemical communications (Camb), 2016, 52(84): batteries[J]. Energy Storage Materials, 2022, 48: 155-163.
12458-12461. [59] DONG H, TUTUSAUS O, LIANG Y L, et al. High-power Mg
[40] WANG Y R, LIU Z T, WANG C X, et al. π-Conjugated batteries enabled by heterogeneous enolization redox chemistry and
polyimide-based organic cathodes with extremely-long cycling life weakly coordinating electrolytes[J]. Nature Energy, 2020, 5:
for rechargeable magnesium batteries[J]. Energy Storage Materials, 1043-1050.
2020, 26: 494-502. [60] MUHAMMAD A, SEAMUS K, MUHAMMAD R. Uncovering
[41] SUN R M, HOU S, LUO C, et al. A covalent organic framework for electrochemistries of rechargeable magnesium-ion batteries at low
fast-charge and durable rechargeable Mg storage[J]. Nano Lett, 2020, and high temperatures[J]. Energy Storage Materials, 2021, 42:
20: 3880-3888. 129-144.
[42] SON S B, GAO T, HARVEY S P, et al. An artificial interphase [61] FEI G Q (费贵强), SUN L L (孙丽丽), SHU K W (舒珂维), et al.
enables reversible magnesium chemistry in carbonate electrolytes[J]. Research progress of polymer-based magnesium ion solid
Nature Chemistry, 2018, 10: 532-539. electrolytes[J]. Fine Chemicals (精细化工), 2022, 39(2): 225-235.