Page 64 - 《精细化工》2023年第8期
P. 64

·1678·                            精细化工   FINE CHEMICALS                                 第 40 卷

            [24]  ZHANG Y Q, LIUA G, ZHANG C H, et al. Low-cost MgFe xMn 2–xO 4   [43]  DU A, ZHANG Z H, QU H T, et al. An efficient organic magnesium
                 cathode materials for  high-performance  aqueous rechargeable   borate-based electrolyte with non-nucleophilic characteristics for
                 magnesium-ion  batteries[J]. Chemical Engineering  Journal, 2020,   magnesium-sulfur  battery[J]. Energy & Environmental Science,
                 392: 123652.                                      2017, 10: 2616-2625.
            [25]  NOVÁK P, IMHOF R, HAAS O. Magnesium insertion electrodes for   [44]  ZHANG Z H, DONG S, CUI  Z,  et al. Rechargeable  magnesium
                 rechargeable nonaqueous batteries-A competitive alternative to   batteries using conversion-type cathodes: A perspective and
                 lithium[J]. Electrochimica Acta, 1999, 45(1/2): 351-367.   minireview[J]. Small Methods, 2018, 2: 1800020.
            [26]  ZHANG D L, CHEN Q, ZHANG J H, et al. MgMn 2O 4/multiwalled   [45]  ATTIAS R, SALAMA M, HIRSCH  B, et al. Anode-electrolyte
                 carbon nanotubes composite fabricated by  electrochemical   interfaces in secondary magnesium  batteries[J]. Joule, 2019, 3:
                 conversion as a high-performance cathode material for aqueous   27-52.
                 rechargeable  magnesium ion battery[J]. Journal of Alloys and   [46]  REN W, CHENG M X, WANG Y R, et al. Boron-based electrolytes
                 Compounds, 2021, 873: 159872.                     for rechargeable magnesium batteries: Biography and perspective[J].
            [27]  LI Z  Y, MU X  K, ZHAO K  Z,  et al. Fast kinetics of  multivalent   Batteries & Supercaps, 2022, 5: 1-17.
                 intercalation chemistry enabled by solvated magnesium-ions into   [47]  SUN J C, ZOU  Y B, GAO S  Z, et al. Robust strategy of
                 self-established metallic layered materials[J]. Nature Communications,   quasi-solid-state electrolytes to boost the stability and compatibility
                 2018, 5115(9): 1-13.                              of Mg ion batteries[J]. ACS Applied Materials & Interfaces, 2020,
            [28]  YOO H D, LIANG Y, DONG H, et al. Fast kinetics of magnesium   12: 54711-54719.
                 monochloride cations in interlayer-expanded titanium disulfide for   [48]  SHAO Y Y, RAJPUT N N, HU J Z, et al. Nanocomposite polymer
                 magnesium rechargeable batteries[J]. Nature Communications, 2017,   electrolyte for rechargeable  magnesium batteries[J]. Nano Energy,
                 339(8): 1-10.                                     2015, 12: 750-759.
            [29]  SOTOMURA T, UEMACHI  H, TAKCYAMA  K, et  al. New   [49]  GOBECHIYA E R, SUKHANOV M V, PET'KOV V I, et al. Crystal
                 organodisulflde-polyaniline composite cathode for secondary lithium   structure of the double magnesium  zirconium orthophosphate at
                 battcry[J]. Electrochimica Acta, 1992, 37(10): 1851-1854.   temperatures of 298 and 1023 K[J]. Crystallography Reports, 2008,
            [30]  YAO Y F (尧玉芬), CHEN C G (陈昌国), LIU Y P (刘渝萍), et al.   53(1): 55-60.
                 Research progress of magnesium battery[J]. Materials Reports (材料  [50]  OMOTE A, YOTSUHASHI S, ZENITANI Y, et al. High ion conductivity
                 导报), 2009, 23 (19): 119-121.                      in MgHf(WO 4) 3  solids with ordered  structure: 1-D alignments of
            [31]  KOKESTSU T, MA J, MORGAN B. J, BODY M, et al. Reversible   Mg  and Hf  ions[J]. Journal of the American Ceramic Society,
                                                                           4+
                                                                     2+
                 magnesium and aluminum ions insertion in cation-deficient anatase   2011, 94(8): 2285-2288.
                 TiO 2[J]. Nature Materials, 2017, 16: 1142-1148.   [51]  HIGASHI S, MIWA K, AOKI M, et al. A novel inorganic solid state
            [32]  MORI T, MASESE T, ORIKASA Y, et al. Anti-site mixing governs   ion conductor for rechargeable Mg batteries[J]. Chemical
                 the electrochemical performances of olivine-type MgMnSiO 4 cathodes   Communications, 2014, 50(11): 1320-1322.
                 for rechargeable magnesium batteries[J]. Physical Chemistry Chemical   [52]  YAN Y G, DONONELLI W, JORGENSEN M, et al. The mechanism
                 Physic, 2016, 18: 13524-13529.                    of Mg  conduction in ammine magnesium borohydride promoted by
                                                                       2+
            [33]  FENG Z Z, YANG J, NULI Y,  et al. Sol-gel synthesis of   a neutral  molecule[J]. Physical  Chemistry Chemical Physics, 2020,
                 Mg 1.03Mn 0.97SiO 4 and its electrochemical intercalation behavior[J].
                 Journal of Power Sources, 2008, 184: 604-609.     22: 9204-9209.
            [34]  HEATH J, CHEN H, ISLAM M S. MgFeSiO 4 as a potential cathode   [53]  YAMANAKA T, HAYASHI A, YAMAUCHI A, et al. Preparation of
                 material for magnesium batteries: Ion diffusion rates and voltage   magnesium ion conducting MgS-P 2S 5-MgI 2 glasses by a mechanochemical
                 trends[J]. Journal of Materials Chemistry A, 2017, 5: 13161-13167.   technique[J]. Solid State Ionics, 2014, 262: 601.
            [35]  ORIKASA  Y, OKADO T, ABE T,  et al. High energy density   [54]  AUBREY M L, AMELOOT  R, WIERS B M, et al. Metal-organic
                 rechargeable magnesium battery using earth-abundant and non-toxic   frameworks as solid magnesium electrolytes[J]. Energy & Environmental
                 elements[J]. Scientific Reports, 2015, 4: 5622.   Science, 2014, 7: 667-671.        +      2+
            [36]  ZHENG Y P, NULI Y N, CHEN Q, et al. Magnesium cobalt silicate   [55]  MINER E M, PARK S S, DINCA M.  High Li  and Mg
                 materials for reversible magnesium ion storage[J]. Electrochim Acta,   conductivity in a Cu-azolate metal-organic frame-work[J]. Journal of
                 2012, 66: 75-81.                                  the American Chemical Society, 2019, 141: 4422.
            [37]  FENG Z  Z,  YANG J, NULI  Y N, et  al. Preparation and   [56]  WANG P W,  TRÜCK J, HÄCKER J, et al. A design concept for
                                                                             2+
                                                                                +
                 electrochemical study of a new  magnesium intercalation material   halogen-free Mg /Li -dual salt-containing  gel-polymer-electrolytes
                 Mg 1.03Mn 0.97SiO 4[J]. Electrochemistry  Communications, 2008, 10:   for rechargeable magnesium batteries[J]. Energy Storage Materials,
                 1291-1294.                                        2022, 49: 509-517.
            [38]  MAXIM A, ALEXANDER M, ANDREY V P. TiS 3 magnesium   [57]  JATHUSHAN V, JAYAMAHA J H T B, WIJAYASINGHE H W M A
                 battery material: Atomic-scale study of maximum capacity and   C,  et al. Electrochemical studies on poly(ethylene oxide) based
                 structural behavior[J]. Journal of Physical Chemistry C, 2017, 121:   gel-polymer electrolytes for magnesium-ion batteries[J]. Materials
                 15509-15515.                                      Science Forum, 2022, 1077: 229-234.
            [39]  DUFFORT V, SUN X Q, NAZAR L F. Screening for  positive   [58]  WANG  L P, LI  Z Y, MENG Z, et al. Designing  gel polymer
                 electrodes for magnesium batteries: A protocol for studies at elevated   electrolyte with synergetic properties  for rechargeable magnesium
                 temperatures[J]. Chemical communications (Camb), 2016, 52(84):   batteries[J]. Energy Storage Materials, 2022, 48: 155-163.
                 12458-12461.                                  [59]  DONG H, TUTUSAUS  O, LIANG Y  L,  et al. High-power Mg
            [40]  WANG Y R, LIU Z  T,  WANG  C X,  et al.  π-Conjugated   batteries enabled by heterogeneous enolization redox chemistry and
                 polyimide-based organic cathodes with extremely-long cycling life   weakly  coordinating electrolytes[J]. Nature Energy, 2020, 5:
                 for rechargeable magnesium batteries[J]. Energy Storage Materials,   1043-1050.
                 2020, 26: 494-502.                            [60]  MUHAMMAD A, SEAMUS K, MUHAMMAD R.  Uncovering
            [41]  SUN R M, HOU S, LUO C, et al. A covalent organic framework for   electrochemistries  of rechargeable magnesium-ion batteries at low
                 fast-charge and durable rechargeable Mg storage[J]. Nano Lett, 2020,   and high  temperatures[J]. Energy  Storage Materials, 2021, 42:
                 20: 3880-3888.                                    129-144.
            [42]  SON S B, GAO  T, HARVEY S P, et  al. An artificial interphase   [61]  FEI G Q (费贵强), SUN L L (孙丽丽), SHU K W (舒珂维), et al.
                 enables reversible magnesium chemistry in carbonate electrolytes[J].   Research progress of polymer-based  magnesium ion solid
                 Nature Chemistry, 2018, 10: 532-539.              electrolytes[J]. Fine Chemicals (精细化工), 2022, 39(2): 225-235.
   59   60   61   62   63   64   65   66   67   68   69