Page 63 - 《精细化工》2023年第8期
P. 63

第 8 期                          丁   波,等:  可充镁离子电池研究发展现状                                  ·1677·


                (1)针对目前正极材料中存在的问题,如 Mg                   2+        magnesium battery: Current status and key challenges for the
                                                                   future[J]. Progress in Materials Science, 2015, 46(28): 1-86.
            扩散慢、材料导电性差、与电解液兼容性不佳等,
                                                               [2]   MASSÉ R C, UCHAKER E,  CAO  G. Beyond Li-ion: Electrode
                               2+
            可尝试采用可供 Mg 自由进出的通道或空隙结构                                materials for sodium- and magnesium-ion batteries[J]. Science China
                                                 2+
            足够大的材料;在嵌入基体中添加与 Mg 共嵌入的                               Materials, 2015, 58(9): 715-766.
                                                               [3]   NUKVIST B, NILSSON M. Rapidly falling costs of battery packs
            阴离子基团以减小其溶剂化作用;改进合成方法,                                 for electric vehicles[J]. Nature Climate Change, 2015, 5(4): 329-332.
            优化粒子粒径及形貌,得到比表面积更大的活性物                             [4]   DUNN B, KAMATH H, TARASCON J M. Electrical energy storage
                                                                   for  the grid: A  battery of choices[J]. Science, 2011, 334(6058):
            质,改善动力学性能;或通过掺杂、包覆手段来提                                 928-935.
            高材料导电性等,很多新材料的开发都借鉴锂离子                             [5]   YANG Z G, ZHANG J  L,  KINTNER-MEYER M C  W,  et al.
                                                                   Electrochemical energy storage for green grid[J]. Chemical Reviews,
            电池的正极材料。可充镁离子电池中镁的电化学行                                 2011, 111(5): 3577-3613.
            为涉及机理比金属锂复杂得多,这是可充镁离子电                             [6]   HUGGINS R A. Energy storage-fundamentals, materials and
                                                                   applications[J]. Springer Berlin, 2010, 26(1): 282-323.
            池目前阶段面临的理论发展瓶颈。此外,就开发新                             [7]   SLATER  M D,  KIM D, LEE E,  et al. Sodium-ion batteries[J].
            型的正极材料而言,设计的材料不仅要具有较好的                                 Advanced Functional Materials, 2013, 23(8): 947-958.
                                                               [8]   FRANCO A A. Rechargeable lithium batteries[J]. Chemical Society
            扩散动力学,还应具有较大的电压窗口,以便提升
                                                                   Reviews, 2015, 26(10): 259-267.
            可充镁离子电池的能量密度;                                      [9]   STAIGER M P, PIETAK A M, HUADMAI J, et al. Magnesium and
                                                                   its alloys as  orthopedic bio-materials: A review[J]. Biomaterials,
                (2)可充镁离子电池正极亟需研究新的适用嵌
                                                                   2006, 27(9): 1728-1734.
            入结构材料、聚阴离子型和转换型正极材料等,尤                             [10]  WITTE F. Reprint of:  The history of biodegradable  magnesium
            其是氧化物系列。通过研究可充镁离子电池的发展                                 implants: A review[J]. Acta Biomaterialia, 2015, 23(5): S28-S40.
                                                               [11]  GREGORY T D. HOFFMAN R J, WINTERTON R C. Nonaqueous
            过程可以发现,这类嵌入型氧化物材料应选用可发                                 electrochemistry of magnesium applications to energy storage[J].
            生可逆相变,却只发生微小的晶胞参数变化晶系的                                 Journal of the Electrochemical Society, 1990, 137: 775-780.
                                                               [12]  AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for
            材料,这或许可以作为筛选这类材料的一个理论依                                 rechargeable magnesium batteries[J]. Nature, 2000, 407: 724-727.
            据,值得对其进行更深入的探讨和研究。因此,可                             [13]  MIZRAHI O, AMIR N, POLLAK E, et al. Electrolyte solutions with
                                                                   a wide  electrochemical window for rechargeable magnesium
            充镁离子电池嵌入型氧化物正极材料的研究仍需加                                 batteries[J]. Journal of The Electrochemical Society, 2008, 155(2):
            强和重视,开发稳定高性能的正极材料,是促进可                                 A103-A109.
                                                               [14]  DU A B,  ZHANG Z  H, QU H T,  et al. An Efficient organic
            充镁离子电池产业化应用的关键;                                        magnesium borate-based electrolyte with non-nucleophilic characteristics
                (3)目前所研究的可充镁离子电池电解质比较                              for magnesiumsulfur  battery[J]. Energy & Environmental Science,
                                                                   2017, 10: 2616-2625.
            单一,大多是易吸水的液态有机物,存在着易失效
                                                               [15]  TUTUSAUS O, MOHTADI  R,  ARTHUR T S,  et al. An  efficient
            和易使负极材料钝化等问题。可充镁离子电池电解                                 halogen-free electrolyte for use in rechargeable magnesium
            质研究,需要重视可充镁离子电池固态电解质的开                                 batteries[J]. Angewandte Chemie International Edition, 2015, 54:
                                                                   7900-7904.
            发,促进该技术的产业应用,对全球新能源领域的                             [16]  DAVIDSON R, VERMA A, SANTOS D, et al. Formation of
            发展具有深远的意义。面对大规模的储能市场,除                                 magnesium dendrites during electrodeposition[J]. ACS Energy
                                                                   Letters, 2019, 4: 375-376.
            技术壁垒比较高的可充固态镁离子电池外,安全型                             [17]  ZHANG J L, CHANG Z Y, ZHANG Z H. Current design strategies
            的可充水系镁离子电池及其所使用的无机盐水电                                  for rechargeable magnesium-based batteries[J]. ACS Nano, 2021, 15:
                                                                   15594-15624.
            解质能从根本上避免有机电解质的安全性问题。基
                                                               [18]  KIM H S,  ARTHUR T S,  ALLRED G D,  et al. Structure and
            于此认识,需要开发适合于可充水系镁离子电池所                                 compatibility of a magnesium electrolyte with a sulphur cathode[J].
            需的长循环及结构稳定的正极材料和较宽电化学                                  Nature Communications, 2011, 2: 427.
                                                               [19]  LIU F F, WANG T T, LIU X B, et al. Challenges and recent progress
            窗口水系电解质来满足绿色、安全、环保大型储能                                 on key materials for rechargeable magnesium batteries[J]. Advanced
            的需求;                                                   Energy Materials, 2021, 11: 2000787.
                                                               [20]  YU K (余琨), SONG J M (宋觉敏), CAI Z  Y (蔡志勇),  et al.
                (4)可充镁离子电池正极材料和电解液的研究,                             Research, development and application of magnesium and its alloy
            应以降低可充镁离子电池正极材料的电极极化和增                                 anode material[J].  Metallic Functional Materials (金属功能材料),
                  2+
            强 Mg 在电解质中的扩散动力学为首选目标,通过                               2010, 4(17): 66-71.
                                                               [21]  ZHOU L M, LIU Q, ZHANG Z H, et al. Interlayer-spacing-regulated
            合理设计正极材料结构,优化正负极电极与电解质                                 VOPO 4 nanosheets with fast kinetics for high-capacity and durable
            界面状态,旨在制造大容量、长寿命和高安全性的                                 rechargeable magnesium batteries[J]. Advanced Materials, 2018, 30:
                                                                   1-7.
            可充镁离子电池,促进其在大规模储能领域的广泛                             [22]  JI X, CHEN J,  WANG F,  et al. Water-activated VOPO 4 for
            应用。                                                    magnesium ion batteries[J]. Nano Letters, 2018, 18: 6441-6448.
                                                               [23]  WANG Y R, XUE X L, LIU P Y, et al. Atomic substitution enabled
            参考文献:                                                  synthesis of vacancy-rich two-dimensional black TiO 2–x  nanoflakes
                                                                   for  high-performance rechargeable  magnesium batteries[J]. ACS
            [1]   SAHA P, DATTA M K, VELIKOKHATNYI O I, et al. Rechargeable   Nano, 2018, 12: 12492-12502.
   58   59   60   61   62   63   64   65   66   67   68