Page 63 - 《精细化工》2023年第8期
P. 63
第 8 期 丁 波,等: 可充镁离子电池研究发展现状 ·1677·
(1)针对目前正极材料中存在的问题,如 Mg 2+ magnesium battery: Current status and key challenges for the
future[J]. Progress in Materials Science, 2015, 46(28): 1-86.
扩散慢、材料导电性差、与电解液兼容性不佳等,
[2] MASSÉ R C, UCHAKER E, CAO G. Beyond Li-ion: Electrode
2+
可尝试采用可供 Mg 自由进出的通道或空隙结构 materials for sodium- and magnesium-ion batteries[J]. Science China
2+
足够大的材料;在嵌入基体中添加与 Mg 共嵌入的 Materials, 2015, 58(9): 715-766.
[3] NUKVIST B, NILSSON M. Rapidly falling costs of battery packs
阴离子基团以减小其溶剂化作用;改进合成方法, for electric vehicles[J]. Nature Climate Change, 2015, 5(4): 329-332.
优化粒子粒径及形貌,得到比表面积更大的活性物 [4] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage
for the grid: A battery of choices[J]. Science, 2011, 334(6058):
质,改善动力学性能;或通过掺杂、包覆手段来提 928-935.
高材料导电性等,很多新材料的开发都借鉴锂离子 [5] YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al.
Electrochemical energy storage for green grid[J]. Chemical Reviews,
电池的正极材料。可充镁离子电池中镁的电化学行 2011, 111(5): 3577-3613.
为涉及机理比金属锂复杂得多,这是可充镁离子电 [6] HUGGINS R A. Energy storage-fundamentals, materials and
applications[J]. Springer Berlin, 2010, 26(1): 282-323.
池目前阶段面临的理论发展瓶颈。此外,就开发新 [7] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J].
型的正极材料而言,设计的材料不仅要具有较好的 Advanced Functional Materials, 2013, 23(8): 947-958.
[8] FRANCO A A. Rechargeable lithium batteries[J]. Chemical Society
扩散动力学,还应具有较大的电压窗口,以便提升
Reviews, 2015, 26(10): 259-267.
可充镁离子电池的能量密度; [9] STAIGER M P, PIETAK A M, HUADMAI J, et al. Magnesium and
its alloys as orthopedic bio-materials: A review[J]. Biomaterials,
(2)可充镁离子电池正极亟需研究新的适用嵌
2006, 27(9): 1728-1734.
入结构材料、聚阴离子型和转换型正极材料等,尤 [10] WITTE F. Reprint of: The history of biodegradable magnesium
其是氧化物系列。通过研究可充镁离子电池的发展 implants: A review[J]. Acta Biomaterialia, 2015, 23(5): S28-S40.
[11] GREGORY T D. HOFFMAN R J, WINTERTON R C. Nonaqueous
过程可以发现,这类嵌入型氧化物材料应选用可发 electrochemistry of magnesium applications to energy storage[J].
生可逆相变,却只发生微小的晶胞参数变化晶系的 Journal of the Electrochemical Society, 1990, 137: 775-780.
[12] AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for
材料,这或许可以作为筛选这类材料的一个理论依 rechargeable magnesium batteries[J]. Nature, 2000, 407: 724-727.
据,值得对其进行更深入的探讨和研究。因此,可 [13] MIZRAHI O, AMIR N, POLLAK E, et al. Electrolyte solutions with
a wide electrochemical window for rechargeable magnesium
充镁离子电池嵌入型氧化物正极材料的研究仍需加 batteries[J]. Journal of The Electrochemical Society, 2008, 155(2):
强和重视,开发稳定高性能的正极材料,是促进可 A103-A109.
[14] DU A B, ZHANG Z H, QU H T, et al. An Efficient organic
充镁离子电池产业化应用的关键; magnesium borate-based electrolyte with non-nucleophilic characteristics
(3)目前所研究的可充镁离子电池电解质比较 for magnesiumsulfur battery[J]. Energy & Environmental Science,
2017, 10: 2616-2625.
单一,大多是易吸水的液态有机物,存在着易失效
[15] TUTUSAUS O, MOHTADI R, ARTHUR T S, et al. An efficient
和易使负极材料钝化等问题。可充镁离子电池电解 halogen-free electrolyte for use in rechargeable magnesium
质研究,需要重视可充镁离子电池固态电解质的开 batteries[J]. Angewandte Chemie International Edition, 2015, 54:
7900-7904.
发,促进该技术的产业应用,对全球新能源领域的 [16] DAVIDSON R, VERMA A, SANTOS D, et al. Formation of
发展具有深远的意义。面对大规模的储能市场,除 magnesium dendrites during electrodeposition[J]. ACS Energy
Letters, 2019, 4: 375-376.
技术壁垒比较高的可充固态镁离子电池外,安全型 [17] ZHANG J L, CHANG Z Y, ZHANG Z H. Current design strategies
的可充水系镁离子电池及其所使用的无机盐水电 for rechargeable magnesium-based batteries[J]. ACS Nano, 2021, 15:
15594-15624.
解质能从根本上避免有机电解质的安全性问题。基
[18] KIM H S, ARTHUR T S, ALLRED G D, et al. Structure and
于此认识,需要开发适合于可充水系镁离子电池所 compatibility of a magnesium electrolyte with a sulphur cathode[J].
需的长循环及结构稳定的正极材料和较宽电化学 Nature Communications, 2011, 2: 427.
[19] LIU F F, WANG T T, LIU X B, et al. Challenges and recent progress
窗口水系电解质来满足绿色、安全、环保大型储能 on key materials for rechargeable magnesium batteries[J]. Advanced
的需求; Energy Materials, 2021, 11: 2000787.
[20] YU K (余琨), SONG J M (宋觉敏), CAI Z Y (蔡志勇), et al.
(4)可充镁离子电池正极材料和电解液的研究, Research, development and application of magnesium and its alloy
应以降低可充镁离子电池正极材料的电极极化和增 anode material[J]. Metallic Functional Materials (金属功能材料),
2+
强 Mg 在电解质中的扩散动力学为首选目标,通过 2010, 4(17): 66-71.
[21] ZHOU L M, LIU Q, ZHANG Z H, et al. Interlayer-spacing-regulated
合理设计正极材料结构,优化正负极电极与电解质 VOPO 4 nanosheets with fast kinetics for high-capacity and durable
界面状态,旨在制造大容量、长寿命和高安全性的 rechargeable magnesium batteries[J]. Advanced Materials, 2018, 30:
1-7.
可充镁离子电池,促进其在大规模储能领域的广泛 [22] JI X, CHEN J, WANG F, et al. Water-activated VOPO 4 for
应用。 magnesium ion batteries[J]. Nano Letters, 2018, 18: 6441-6448.
[23] WANG Y R, XUE X L, LIU P Y, et al. Atomic substitution enabled
参考文献: synthesis of vacancy-rich two-dimensional black TiO 2–x nanoflakes
for high-performance rechargeable magnesium batteries[J]. ACS
[1] SAHA P, DATTA M K, VELIKOKHATNYI O I, et al. Rechargeable Nano, 2018, 12: 12492-12502.