Page 73 - 《精细化工》2023年第8期
P. 73

第 8 期                        宋晶璟,等:  光催化涂层净化室内 VOCs 研究进展                                ·1687·


            [35]  MO J H, ZHANG Y P, XU Q J, et al. Photocatalytic purification of   activity of sol-gel derived rare earth  metal (La, Nd, Sm and Dy)-
                 volatile organic compounds in indoor air: A literature review[J].   doped ZnO photocatalysts for degradation of dyes[J]. RSC Advances,
                 Atmospheric Environment, 2009, 43(14): 2229-2246.   2018, 8(31): 17582-17594.
            [36]  ZHANG Y G, WANG Y F, XIE R J, et al. Photocatalytic oxidation for   [52]  JIANG D F, WANG S, OUYANG Y Y, et al. A review on metal ions
                 volatile organic compounds elimination: From fundamental research  to   modified TiO 2 for photocatalytic degradation of organic pollutants[J].
                 practical applications[J]. Environmental Science  &  Technology,   Catalysts, 2021, 11(9): 1039.
                 2022, 56(23): 16582-16601.                    [53]  LI  W, CHU X S, WANG F,  et al. Enhanced cocatalyst-support
            [37]  LIN J D (林劲冬), LIANG L Y (梁丽云), LAN R H (蓝仁华), et al.   interaction and promoted electron transfer of 3D porous g-C 3N 4/GO-M
                 Fe-TiO 2 preparation  of photocatalytic coating materials and   (Au, Pd, Pt) composite catalysts for hydrogen evolution[J]. Applied
                 characterization of formaldehyde removal under visible light[J]. Fine   Catalysis B: Environmental, 2021, 288: 120034.
                 Chemicals (精细化工), 2004, 21(2):115-118.        [54]  FENG Y W, LING L L, NIE J H, et al. Self-powered electrostatic
            [38]  PHAM T D, LEE B K, PHAM C D. Advanced removal of toluene in   filter with enhanced photocatalytic degradation  of formaldehyde
                 aerosol by adsorption and photocatalytic degradation of silver-doped   based on built-in triboelectric nanogenerators[J]. ACS Nano, 2017,
                 TiO 2/PU under  visible light  irradiation[J]. RSC Advances, 2016,   11(12): 12411-12418.
                 6(30): 25346-25358.                           [55]  WANG Y Y, DING X, ZHANG P, et al. Convenient and recyclable
            [39]  PHAM T D, LEE B K. Selective removal of polar VOCs by novel   TiO 2/g-C 3N 4 photocatalytic coating: Layer-by-layer self-assembly
                 photocatalytic activity of  metals  co-doped TiO 2/PU under visible   construction on cotton fabrics leading to improved catalytic activity
                 light[J]. Chemical Engineering Journal, 2017, 307: 63-73.   under visible light[J]. Industrial & Engineering Chemistry Research,
            [40]  PERAL J,  OLLIS  D F. Heterogeneous photocatalytic oxidation of   2019, 58(10): 3978-3987.
                 gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde,   [56]  CHEN C S, CAO S Y, HUI L, et al. Highly efficient photocatalytic
                 formaldehyde, and m-xylene oxidation[J]. Journal of Catalysis, 1992,   performance of graphene oxide/TiO 2-Bi 2O 3 hybrid coating for
                 136(2): 554-565.                                  organic dyes and NO gas[J]. Journal of Materials Science: Materials
            [41]  WEON S, HE F,  CHOI  W. Status and challenges in photocatalytic   in Electronics, 2015, 26(6):3385-3391.
                 nanotechnology for cleaning air polluted with volatile organic   [57]  LIU S H, LIN W X. A simple method to prepare g-C 3N 4-TiO 2/waste
                 compounds: Visible light utilization and catalyst deactivation[J].   zeolites as visible-light-responsive photocatalytic coating for degradation
                 Environmental Science: Nano, 2019, 6: 3185-3214.   of indoor formaldehyde[J]. Journal of Hazardous Materials, 2019,
            [42]  JAFARIKOJOUR M, SOHRABI M, ROYAEE S J, et al. Evaluation   368: 468-476.
                 and optimization of a novel immobilized photoreactor for the   [58]  XIAO J R, PENG T Y, LI R, et al. Preparation, phase transformation
                 degradation of gaseous toluene[J]. Clean-Soil Air Water, 2015, 43(5):   and photocatalytic activities of cerium-doped mesoporous titania
                 662-670.                                          nanoparticles[J]. Journal  of  Solid  State Chemistry, 2006, 179(4):
            [43] ZHANG H (张浩), QIAN F P (钱付平). Preparation and degradation   1161-1170.
                 of formaldehyde by Cu-TiO 2 photocatalytic coatings[J]. Paint &   [59]  ZHANG P, PAN G W, GUO R T, et al. The Mo modified Ce/TiO 2
                                                                                    0
                 Coatings Industry (涂料工业), 2011, 41(5): 46-48.     catalyst for simultaneous Hg  oxidation and NO reduction[J]. Journal
            [44]  NACKEN M, HEIDENREICH S,  HACKEL M,  et al. Catalytic   of the Energy Institute, 2019, 92(5): 1313-1328.
                 activation of ceramic filter elements for combined particle separation   [60]  JAFARI A J, KALANTARY R R, ESRAFILI A, et al. Synthesis of
                 NO x  removal  and  VOC total oxidation[J]. Applied Catalysis B:   silica-functionalized graphene oxide/ZnO coated on fiberglass and its
                 Environmental, 2007, 70(1/2/3/4): 370-376.        application in photocatalytic removal of gaseous benzene[J]. Process
            [45]  NOGUCHI T, FUJISHIMA A, SAWUNYTAMA P, et al. Photocatalytic   Safety and Environmental Protection, 2018, 116: 377-387.
                 degradation of gaseous formaldehyde using TiO 2 film[J]. Environmental   [61]  ANWER H, ALI  M, LEE S,  et al.  Simulating alveoli-inspired air
                 Science & Technology, 1998, 32(23): 3831-3833.    pockets in a ZnO/NiMoO 4/g-C 3N 4 catalyst filter for toluene
            [46]  CAO L X, HUANG A M, SPIESS F J, et al. Gas-phase oxidation of   entrapment and photodecomposition[J]. Journal of Hazardous Materials,
                 1-butene using nanoscale  TiO 2 photocatalysts[J]. Journal of   2021, 409: 124497.
                 Catalysis, 1999, 188(1): 48-57.               [62]  FUKUMURA T, SAMBANDAN E, YAMASHITA H. Synthesis and
            [47]  FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a   VOC degradation  ability of a CeO 2/WO 3 thin-layer visible-light
                 semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.   photocatalyst[J]. Materials Research Bulletin, 2017, 94: 493-499.
            [48]  XIE K L, FANG J F, LI L, et al. Progress of graphite carbon nitride   [63]  LEE G H,  MIYAWAKI J, YEH J,  et al. Development of carbon-
                 with different dimensions in the photocatalytic degradation of dyes:   supported  hybrid  catalyst for clean removal of formaldehyde
                 A review[J]. Journal of Alloys and Compounds, 2022: 163589.   indoors[J]. Catalysis Today, 2012, 185(1): 278-283.
            [49]  ZHANG  H N,  LI Y F, WANG J Z, et al. An unprecedent hydride   [64]    LI Y, WU X  Y, LI J,  et al. Z-scheme  g-C 3N 4@Cs xWO 3
                 transfer  pathway for selective photocatalytic reduction  of CO 2 to   heterostructure as smart window coating for UV isolating, Vis
                 formic acid on TiO 2[J]. Applied Catalysis B: Environmental, 2021,   penetrating, NIR shielding and full spectrum photocatalytic decomposing
                 284: 119692.                                      VOCs[J]. Applied Catalysis B: Environmental, 2018, 229: 218-226.
            [50]  QIU X L (邱星林), XU A W (徐安武). Preparation of nano-scale   [65]  DONG F, WANG Z Y, LI Y H, et al. Immobilization of polymeric
                 TiO 2 photocatalytic purification  atmospheric  environmental protection   g-C 3N 4 on structured ceramic foam for efficient visible light
                 coating [J]. China Coatings (中国涂料), 2000, 4:30-32.   photocatalytic air purification with real indoor illumination[J].
            [51]  ALAM  U, KHAN A, ALI D,  et al. Comparative photocatalytic   Environmental Science & Technology, 2014, 48(17): 10345-10353.
   68   69   70   71   72   73   74   75   76   77   78