Page 46 - 《精细化工》2023年第9期
P. 46

·1894·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 fundamentals to applications[J]. Chemical Society Reviews, 2016,   luminescence from an  electron donor/acceptor binary system[J].
                 45(8): 2090-2136.                                 Chemistry Letters, 2019, 49(2): 203-206.
            [17]  XIE Y J, GE Y W, PENG Q, et al. How the molecular packing affects   [35]  HAN J L, FENG W H, MULETA D Y, et al. Small-molecule-doped
                 the room temperature phosphorescence in pure organic compounds:   organic crystals with long-persistent luminescence[J].  Advanced
                 Ingenious molecular design, detailed  crystal analysis, and rational   Functional Materials, 2019, 29(30): 1902503.
                 theoretical calculations[J]. Advanced Materials, 2017, 29(17):   [36]  MULETA D Y, SONG J W, FENG W H, et al. Small molecule-doped
                 1606829.                                          organic crystals towards long-persistent luminescence in water and
            [18]  MAO H T  ( 毛慧 婷 ).  The properties of ultralong organic   air[J]. Journal of Materials Chemistry C, 2021, 9(15): 5093-5097.
                 phosphorescence  materials based on phenothiazine derivatives[D].   [37]  SONG J W, MULETA D Y, FENG W H, et al. Photophysical tuning
                 Jilin: Jilin University (吉林大学), 2021.             of small-molecule-doped organic crystals with long-persistent
            [19]  BIAN  L F, SHI  H F, WANG X,  et al. Simultaneously enhancing   luminescence by variation of dopants[J]. Dyes and Pigments, 2021,
                 efficiency and lifetime of ultralong organic phosphorescence   193: 109501.
                 materials by  molecular self-assembly[J]. Journal of the American   [38]  TIAN  Y,  YANG J, LIU Z J,  et al. Multistage stimulus-responsive
                 Chemical Society, 2018, 140(34): 10734-10739.     room temperature phosphorescence  based on  host-guest doping
            [20]  AN Z F, ZHENG C, TAO Y, et al. Stabilizing triplet excited states for   systems[J]. Angewandte Chemie International Edition, 2021, 60(37):
                 ultralong organic phosphorescence[J]. Nature Materials, 2015, 14(7):   20259-20263.
                 685-690.                                      [39]  LIU M, ZONG J, WANG  L C,  et al. Kilogram-scale fabricated
            [21]  HE G, DELGADO W T, SCHATZ  D J,  et al. Coaxing solid-state   organic long-persistent luminescence materials with  multi-level
                 phosphorescence  from tellurophenes[J].  Angewandte Chemie   temperature response[J]. Advanced Optical Materials, 2022, 10(23):
                 International Edition, 2014, 53(18): 4587-4591.   2201684.
            [22]  BARONCINI M,  BERGAMINI G,  CERONI P.  Rigidification or   [40]  MAO J Y (毛嘉懿), FENG W H (冯文慧), WANG T Y (汪天洋).
                 interaction-induced phosphorescence of organic molecules[J].   Guest  isomerism  affects  afterglow color of organic host-guest
                 Chemical Communications, 2017, 53(13): 2081-2093.   crystals[J]. Chemical Journal of Chinese Universities (高等学校化学
            [23]  WU B, GUO N N, XU X T, et al. Ultralong and high-efficiency room   学报), 2023, 44(6): 171-179.
                 temperature phosphorescence of organic-phosphors-doped polymer   [41]  TURRO N J, BOLT J D, KURODA Y, et al. A study of the kinetics
                 films enhanced by 3D network[J]. Advanced Optical Materials, 2020,   of inclusion of halonaphthalenes with  ß-cyclodextrin  via time
                 8(22): 2001192.                                   correlated phosphorescence[J]. Photochemistry  and Photobiology,
            [24]  WU H W, CHI W J, CHEN Z, et al. Achieving amorphous ultralong   1982, 35(1): 69-72.
                 room temperature phosphorescence by coassembling planar small   [42]  MU L, YANG X B, XUE S F, et al. Cucurbit[n]urils-induced room
                 organic molecules with polyvinyl alcohol[J]. Advanced Functional   temperature phosphorescence of quinoline derivatives[J]. Analytica
                 Materials, 2019, 29(10): 1807243.                 Chimica Acta, 2007, 597(1): 90-96.
            [25]  THOMAS  H, PASTOETTER D L, GMELCH M,  et al. Aromatic   [43]  CHEN H, MA  X,  WU S F,  et al. A rapidly self-healing
                 phosphonates: A novel group of emitters showing blue ultralong   supramolecular polymer hydrogel  with photostimulated room-
                 room temperature  phosphorescence[J]. Advanced Materials, 2020,   temperature  phosphorescence  responsiveness[J].  Angewandte
                 32(19): 2000880.                                  Chemie International Edition, 2014, 53(51): 14149-14152.
            [26]  WEI J B, LIANG B Y, DUAN R  H,  et al. Induction of strong   [44]  ZHANG Z Y, XU W W, XU W S, et al. A synergistic enhancement
                 long-lived  room-temperature phosphorescence of  N-phenyl-2-   strategy for realizing ultralong and efficient room-temperature
                 naphthylamine  molecules by confinement in a crystalline   phosphorescence[J]. Angewandte Chemie International Edition,
                 dibromobiphenyl  matrix[J]. Angewandte Chemie International   2020, 59(42): 18748-18754.
                 Edition, 2016, 55(50): 15589-15593.           [45]  LEWIS G N, LIPKIN D. Reversible photochemical processes in rigid
            [27]  LIU N N, PAN Y Y, LEI Y X, et al. Protic acids as third components   media: The dissociation  of organic molecules into radicals and
                 improve the phosphorescence properties of the guest-host system   ions[J]. Journal of  the American Chemical Society, 1942, 64(12):
                 through  hydrogen  bonds[J]. Chemical Engineering Journal, 2022,   2801-2808.
                 433: 133530.                                  [46]  OHKITA H, SAKAI W, TSUCHIDA A, et al. Charge recombination
            [28]  WANG D,  XIE Y F, WU X H,  et al. Excitation-dependent   luminescence  via the photoionization  of a dopant chromophore in
                 triplet-singlet intensity from organic host-guest materials:  Tunable   polymer solids[J]. Macromolecules, 1997, 30(18): 5376-5383.
                 color, white-light emission, and room-temperature phosphorescence[J].   [47]  LIN Z S, KABE R, NISHIMURA N, et al. Organic long-persistent
                 The Journal of Physical Chemistry Letters, 2021, 12(7): 1814-1821.   luminescence from a flexible and transparent doped polymer[J].
            [29]  XIE Z L, ZHANG X  Y, WANG H L,  et al. Wide-range   Advanced Materials, 2018, 30(45): 1803713.
                 lifetime-tunable and responsive ultralong organic phosphorescent   [48]  LI J J, ZHANG H Y, ZHANG  Y,  et al. Room-temperature
                 multi-host/guest system[J]. Nature Communications,  2021, 12(1):   phosphorescence and reversible white light  switch  based on a
                 3522.                                             cyclodextrin polypseudorotaxane xerogel[J]. Advanced Optical
            [30]  CHEN K J, JIANG Y T, ZHU Y B, et al. Host to regulate the T 1-S 1   Materials, 2019, 7(20): 1900589.
                 and T 1-S 0 processes of guest excitons in doped systems to control the   [49]  SU Y, ZHANG Y F, WANG Z H, et al. Excitation-dependent long-
                 TADF and  RTP  emissions[J]. Journal of Materials Chemistry C,   life luminescent polymeric systems under ambient conditions[J].
                 2022, 10(32): 11607-11613.                        Angewandte Chemie International Edition, 2019, 59(25): 9967-9971.
            [31]  CHANMUNGKALAKUL S, WANG C, MIAO R, et al. A descriptor   [50]  ZHANG Y F, SUN Q K,  YUE  L  T,  et al. Room temperature
                 for accurate predictions of host molecules enabling ultralong   phosphorescent (RTP) thermoplastic elastomers with dual and
                 room-temperature phosphorescence in guest emitters[J]. Angewandte   variable RTP emission, photo-patterning memory effect, and dynamic
                 Chemie International Edition, 2022, 61(14): e202200546.   deformation RTP response[J]. Advanced Science, 2022, 9(5):
            [32]  KABE R, ADACHI C. Organic long persistent luminescence[J].   2103402.
                 Nature, 2017, 550(7676): 384-387.             [51]  JINNAI K, KABE R, ADACHI C. Wide-range tuning and
            [33]  JINNAI  K,  NISHIMURA N, KABE R,  et al. Fabrication-method   enhancement of organic long-persistent luminescence using emitter
                 independence of organic long-persistent  luminescence performance[J].   dopants[J]. Advanced Materials, 2018, 30(38): 1800365.
                 Chemistry Letters, 2019, 48(3): 270-273.
            [34]  LIN Z S, KABE  R, ADACHI C. Orange organic long-persistent                 (下转第 2051 页)
   41   42   43   44   45   46   47   48   49   50   51