Page 104 - 201810
P. 104

·1712·                            精细化工   FINE CHEMICALS                                  第 35 卷

                 restructured seafood products[J]. Food Hydrocolloids, 2012, 27(1):   star-shaped ethylene glycol oligomers[J]. Colloid & Polymer
                 145-153.                                          Science, 2015, 293(4): 1059-1071.
            [18]  Xu X, Li  B,  Kennedy J F,  et al. Characterization of konjac   [28]  Jian W, Wu H, Wu L,  et al. Effect of molecular characteristics of
                 glucomannan–gellan gum blend films and their suitability for release   Konjac glucomannan on gelling and rheological properties of Tilapia
                 of nisin incorporated therein[J]. Carbohydrate Polymers, 2007, 70(2):   myofibrillar protein[J]. Carbohydrate Polymers, 2016, 150: 21-31.
                 192-197.                                      [29]  Hosseini-Parvar S H, Matia-Merino L, Goh K  K  T,  et al. Steady
            [19]  Wu C, Peng S,  Wen C,  et al. Structural characterization and   shear flow behavior of gum extracted from  Ocimum basilicum L.
                 properties of konjac glucomannan/curdlan blend films[J]. Carbohydrate   seed: Effect of concentration and temperature[J]. Journal of Food
                 Polymers, 2012, 89(2): 497-503.                   Engineering, 2010, 101(3): 236-243.
            [20]  Alvarez-Manceñido F, Landin M, Lacik I, et al. Konjac glucomannan   [30]  Yaich H, Garna H, Besbes S, et al. Impact of extraction procedures
                 and konjac glucomannan/xanthan  gum mixtures as excipients for   on the chemical, rheological and textural properties of ulvan from
                 controlled  drug delivery systems.  Diffusion  of small drugs[J].   Ulva lactuca of Tunisia coast[J]. Food Hydrocolloids, 2014, 40(11):
                 International Journal of Pharmaceutics, 2007, 349(1/2): 11-18.   53-63.
            [21]  Wen Chengrong (温成荣), Pan Juan (潘娟), Pang Jie (庞杰). Study   [31]  Stamm  H, Steudle H. Purification and characterization of an
                 on the rheological properties of KGM/WG blending system[J].   extracellular polysaccharide from  Haloalkalophilic Bacillus, sp.
                 Cereals & Oils (粮食与油脂), 2014, 27(6): 31-35.       I-450[J]. Enzyme & Microbial Technology, 2004, 34(7): 673-681.
            [22]  Sittikijyothin W, Sampaio P, Gonçalves M P. Heat-induced gelation   [32]  Zhang L M, Zhou J F, Hui P S.  Thickening, shear thinning and
                 of  β-lactoglobulin at varying pH:  Effect of  tara gum on the   thixotropic behavior of a new polysaccharide-based polyampholyte
                 rheological and  structural properties of the gels[J]. Food   in aqueous solutions[J]. Colloids & Surfaces A Physicochemical &
                 Hydrocolloids, 2007, 21(7): 1046-1055.            Engineering Aspects, 2005, 259(1): 189-195.
            [23]  Wu Y, Ding W, Jia L, et al. The rheological properties of tara gum   [33]  Velasco S E, Areizaga J, Irastorza A, et al. Chemical and rheological
                 (Caesalpinia spinosa)[J]. Food Chemistry, 2015, 168: 366-371.   properties  of the beta-glucan produced by  Pediococcus parvulus
            [24]  Yin Shengli (尹胜利), Chen Yanyan (陈艳燕), Sun Jin (孙瑾), et al.   2.6.[J]. J Agric Food Chem, 2009, 57(5): 1827-1834.
                 The characteristics  and the application of tara gum[J]. China Food   [34]  Rai G J, Kumar  A, Biswas P. Effect of excluded  volume on the
                 Additives (中国食品添加剂), 2007,17(4):108-109.          rheology and transport dynamics  of randomly hyperbranched
            [25]  Borzelleca J F, Ladu B N, Senti F R, et al. Evaluation of the safety of   polymers[J]. Journal of Chemical Physics, 2015, 142(17): 174906.
                 tara gum  as  a food ingredient: A review of the literature[J].   [35]  Vicini S, Castellano M, Mauri M, et al. Gelling process for sodium
                 International Journal of Toxicology, 1993, 12(12): 81-89.   alginate: New technical approach by using calcium rich
            [26]  Wang C, Xu M, Lv W  P,  et al.  Study on rheological behavior  of   micro-spheres[J]. Carbohydrate Polymers, 2015, 134: 767-774.
                 konjac glucomannan[J]. Physics Procedia, 2012, 33(11): 25-30.   [36]  Nakauma M, Funami  T, Fang Y,  et al.  Calcium binding and
            [27]  Yoshioka  Y, Oikawa D, Shimasaki T,  et al. Gelation behavior and   calcium-induced gelation  of normal low-methoxyl pectin  modified
                 thermal and mechanical properties of polymer network formed by the   by low molecular-weight polyuronate fraction[J]. Food Hydrocolloids,
                 Diels-Alder reaction of furan- and maleimide-terminated four-arm   2017, 69: 318-328.

            (上接第 1677 页)                                           aqueous suspension[J]. Journal of Jiangsu Polytechnic University (江
                                                                   苏工业学院学报), 2009, 21(1): 28-33.
            [7]   Wang Zhi (王植), Liu Biwu (刘必武). Development of catalyst for
                 making cyclohexylamine and dicyclohexylamine by hydrogenation   [13]  Bai G, Li F, Fan X, et al. Continuous hydrogenation of hydroquinone
                 of aniline[J]. Jiangsu Chemical Industry (江苏化工), 2002, 30(4):   to 1,4-cyclohexanediol over alkaline earth  metal  modified nickel-
                 31-34.                                            based catalysts[J]. Catalysis Communications, 2012, 17(1): 126-130.
            [8]  Lu  Jianghuan (鲁新环), Jiang Hezhan (江和展), Wei Xianlong (危先  [14] Yang Xiaolong (杨晓龙), Xia Chungu (夏春谷), Tang Liping (唐立
                 龙). Highly selective catalytic hydrogenation step preparation of   平). Effect of MgO support and BaO promoter on structure and
                 cyclohexylamine  method of nitrobenzene: CN 103772207 B[P].   catalytic activity of Ruthenium catalysts for ammonia synthesis[J].
                 2014-5-7.                                         Chinese Journal of Inorganic Chemistry (物理化学学报), 2010,
            [9]   Li G, Dong P, Ji D, et al. Effect of support materials on liquid-phase   26(12): 3263-3272.
                 hydrogenation ofhydroquinone over  ruthenium catalysts[J]. Solid   [15]  Wang Ziqing (王自庆), Chen Geng (陈赓), Lin  Jianxin (林建新).
                 State Sciences, 2013, 23(9): 13-16.               Preparation of Ru/Ba-ZrO 2 catalyst and its performance for ammonia
            [10]  Li H, Ji D, Li  Y,  et al.  Effect of  alkaline earth  metals on the   synthesis [J]. Acta Chimica Sinica (化学学报), 2013, 71(2): 205-212.
                 liquid-phase hydrogenation of hydroquinone over Ru-based   [16]  Ding Y, Li X, Pan H, et al. Ru nanoparticles entrapped in ordered
                 catalysts[J]. Solid State Sciences, 2015, 50: 85-90.   mesoporous carbons: an efficient and reusable catalyst for liquid-
            [11]  Song L, Li X,  Wang H,  et al. Ru Nanoparticles entrapped in   phase hydrogenation[J]. Catalysis Letters, 2014, 144(2): 268-277.
                 mesopolymers for efficient liquid-phase hydrogenation of   [17]  Egorov K V, Lebedinskii Y Y, Soloviev A A,  et al. Initial and
                 unsaturated compounds[J]. Catalysis Letters, 2009, 133(2): 63-69.     steady-state Ru growth by atomic layer deposition studied by in situ,
            [12] Dong Rulin (董如林), Ma Li (马丽), Zhang Feng (张锋). Effect of   angle resolved X-ray photoelectron Spectroscopy[J]. Applied Surface
                 polyethylene glycol on the dispersion of Al 2O 3 particles in an   Science, 2017, 419: 107-113.
   99   100   101   102   103   104   105   106   107   108   109