Page 149 - 201812
P. 149
第 12 期 赵 芬,等: 淀粉-丙烯酸盐-普鲁兰多糖 Semi-IPN 的合成及性能 ·2117·
种聚合材料的结构性质差异。由扫描电镜结果可知, [8] Ecaterina S D, Diana F A. Multiresponsive macroporous semi-IPN
st-AA-PULL 表面形成了网络交织的结构,与 st-AA composite hydrogels based on native or anionically modified potato
starch[J]. Carbohydrate Polymers, 2013, 92(1): 23-32.
光滑平整的表面截然不同,此外 BET 的结果也进一
[9] Liu Guojun (刘国军), Sheng Long (盛龙), Tong Qunyi (童群义).
步证实 st-AA-PULL 具有较大的比表面积;红外光
Effects of pullulan on gelation and rheological properties of
谱分析表明,线型高分子 PULL 成功引入了接枝淀 -carrageenan[J]. Science and Technology of Food Industry (食品工
粉网络中。 业科技), 2014, (4): 148-152.
(2)与传统的接枝共聚物相比,本研究合成的 [10] Teng Lirong (滕利荣), Hong Shuisheng (洪水声), Meng Qingfan (孟
庆繁), et al. Study on viscosity properties of pullulan[J]. Food
st-AA-PULL 具更加优良的吸液溶胀性能,在蒸馏
Science (食品科学), 2003, 24(10): 32-35.
水、自来水、生理盐水中的平衡溶胀率分别为 1333、
[11] Kou Dandan (寇丹丹), Lan Run (兰润), Ye Weijian (叶伟建). Study
536、126g/g;由于 PULL 的引入,半互穿网络结构 on the semi-interpenetrating polymer network hydrogel springiness
的 st-AA-PULL 在耐盐性方面得到了较大提升,保 of konjac glucomannan and pullulan[J]. Journal of Southwest
水性、重复操作性也大大的提高了,高温放置 90 min University (Natural Science Edition) (西南大学学报), 2014, 36(4):
205-212.
后仍保有近 30%的水分,重复吸水 5 次后吸水溶胀
[12] Tang Gen (唐根). Study on synthesis and properties of SA/P
率仅下降了 48%。 (AA/AM) interpenetrating polymer networks superabsorbents[D]. An
(3)本文合成的新型 st-AA-PULL 聚合材料兼 Hui University (安徽大学), 2011.
具了接枝淀粉与普鲁兰多糖两者的优良性能,耐盐 [13] García J, Ruiz-Durántez E, Valderruten N E. Interpenetrating
性强,水合性能优良,可作为生物医学、制药技术 polymer networks hydrogels of chitosan and poly(2-hydroxyethyl
methacrylate) for controlled release of quetiapine[J]. Reactive and
中的新型生物材料或作为农业领域中的保湿材料。
Functional Polymers. 2017, 117: 52-59.
此外,st-AA-PULL 聚合材料具有很好的保水性与重 [14] Ecaterina S D. Design and applications of interpenetrating polymer
复操作性,重复操作数次也能保持性能,大大节约 network hydrogels. A review[J]. Chemical Engineering Journal,
了应用成本。 2014, 243(5): 572-590.
[15] Cui Li (崔莉), Jia Junfang (贾军芳), Xiong Zihao (熊子豪).
参考文献: Preparation and properties of carboxymethyl chitosan and sodium
alginate semi-interpenetrating hydrogels[J]. Acta Polymerica Sinica
[1] Wang Xiuli (汪秀丽), Zhang Yurong (张玉荣), Wang Yuzhong (王玉
(高分子学报), 2014, (3): 361-368.
忠). Research progress of starch-based polymer materials[J]. Acta
[16] Dragan E S, Loghin D F A. Enhanced sorption of methylene blue
Polymerica Sinica (高分子学报), 2011, (1): 24-37.
from aqueous solutions by semi-IPN composite cryogels with
[2] Zhu Baodong (祝宝东), Wang Jian (王鉴), Dong Qun (董群), et al.
anionically modified potato starch entrapped in PAAm matrix[J].
Synthesis and properties of starch superabsorbents[J]. Chemical
Chemical Engineering Journal, 2013, 234(1): 211-222.
Industry and Engineering (化学工业与工程), 2010, 27(4): 329-333.
[17] Liu Yan (刘艳). Preparation and properties study of starch grafted
[3] Zhang Min (张敏), Li Bichan (李碧婵), Chen Liangbi (陈良壁).
acrylic acid/tourmaline superabsorbent[D]. Harbin Institute of
Progress in preparation of interpenetrating polymer network
hydrogels and their application in adsorption[J]. Chemical Industry Technology (哈尔滨工业大学), 2008.
[18] Zhang Ming ( 张明 ). Synthesis and surface modification of
and Engineering Progress (化工进展), 2015, (4): 1043-1049, 1087.
[4] Hu Xin, Lu Lingling, Chen Xu, et al. Mechanically tough P(AA-AM)/layered mineral composite superabsorbent[D]. East
China University of Science and Technology (华东理工大学), 2015.
biomacromolecular IPN hydrogel fibers by enzymatic and ionic
crosslinking[J]. International Journal of Biological Macromolecules, [19] Jiang Zhaoyang (江照洋), Cai Huiwu (蔡会武), Wang Jinglu (王瑾
2015, 72: 403-409. 璐). Study on synthesis of super absorbent resin of acrylic acid/
[5] Ganesh C I, Stevin H G, Michael S D. The bioactivity of starch/SPS interpenetrating network[J]. New Chemical Materials (化
agarose-PEGDA interpenetrating network hydrogels with covalently 工新型材料), 2009, 37(9): 79-82.
immobilized RGD peptides and physically entrapped aggrecan[J]. [20] Mehlika P, Nur T, Fatma K O. Swelling dynamics of IPN hydrogels
Biomaterials, 2014, 35 (11): 3558-3570. including acrylamide-acrylic acid-chitosan and evaluation of their
[6] Cui Li, Jia Junfang, Guo Yi, et al. Preparation and characterization of potential for controlled release of piperacillin-tazobactam[J]. Journal
IPN hydrogels composed of chitosan and gelatin cross-linked by of Applied Polymer Science, 2011, 120(1): 441-450.
genipin[J]. Carbohydrate Polymers, 2014, 99(1): 31-38. [21] Gu Xuerong (顾雪蓉). Gel chemistry[M]. Chemical Industry Press
[7] Vudjung C, Chaisuwan U, Pangan U, et al. Effect of natural rubber (化学工业出版社), 2005: 167-179.
contents on biodegradation and water absorption of interpenetrating [22] Wang J J, Hu H K, Yang Z L, et al. IPN hydrogel nanocomposites
polymer network (IPN) hydrogel from natural rubber and cassava based on agarose and ZnO with antifouling and bactericidal
starch[J]. Energy Procedia. 2014, 56: 255-263. properties[J]. Materials Science & Engineering C, 2016, 61: 376-386.