Page 149 - 201812
P. 149

第 12 期                 赵   芬,等:  淀粉-丙烯酸盐-普鲁兰多糖 Semi-IPN 的合成及性能                          ·2117·


            种聚合材料的结构性质差异。由扫描电镜结果可知,                            [8]   Ecaterina S D, Diana F A. Multiresponsive macroporous semi-IPN
            st-AA-PULL 表面形成了网络交织的结构,与 st-AA                        composite hydrogels based on native or anionically modified potato
                                                                   starch[J]. Carbohydrate Polymers, 2013, 92(1): 23-32.
            光滑平整的表面截然不同,此外 BET 的结果也进一
                                                               [9]   Liu Guojun (刘国军), Sheng Long (盛龙),  Tong Qunyi (童群义).
            步证实 st-AA-PULL 具有较大的比表面积;红外光
                                                                   Effects of pullulan on gelation and rheological properties of
            谱分析表明,线型高分子 PULL 成功引入了接枝淀                              -carrageenan[J]. Science and Technology of Food Industry (食品工
            粉网络中。                                                  业科技), 2014, (4): 148-152.
                 (2)与传统的接枝共聚物相比,本研究合成的                         [10]  Teng Lirong (滕利荣), Hong Shuisheng (洪水声), Meng Qingfan (孟
                                                                   庆繁),  et al. Study on viscosity properties of pullulan[J]. Food
            st-AA-PULL 具更加优良的吸液溶胀性能,在蒸馏
                                                                   Science (食品科学), 2003, 24(10): 32-35.
            水、自来水、生理盐水中的平衡溶胀率分别为 1333、
                                                               [11]  Kou Dandan (寇丹丹), Lan Run (兰润), Ye Weijian (叶伟建). Study
            536、126g/g;由于 PULL 的引入,半互穿网络结构                         on the semi-interpenetrating polymer  network hydrogel springiness
            的 st-AA-PULL 在耐盐性方面得到了较大提升,保                           of konjac glucomannan and pullulan[J]. Journal of Southwest
            水性、重复操作性也大大的提高了,高温放置 90 min                            University (Natural Science Edition) (西南大学学报), 2014, 36(4):
                                                                   205-212.
            后仍保有近 30%的水分,重复吸水 5 次后吸水溶胀
                                                               [12]  Tang Gen (唐根). Study on synthesis and properties of SA/P
            率仅下降了 48%。                                             (AA/AM) interpenetrating polymer networks superabsorbents[D]. An
                 (3)本文合成的新型 st-AA-PULL 聚合材料兼                       Hui University (安徽大学), 2011.
            具了接枝淀粉与普鲁兰多糖两者的优良性能,耐盐                             [13]  García J, Ruiz-Durántez E,  Valderruten N E. Interpenetrating
            性强,水合性能优良,可作为生物医学、制药技术                                 polymer networks  hydrogels of chitosan and poly(2-hydroxyethyl
                                                                   methacrylate) for controlled release of quetiapine[J]. Reactive and
            中的新型生物材料或作为农业领域中的保湿材料。
                                                                   Functional Polymers. 2017, 117: 52-59.
            此外,st-AA-PULL 聚合材料具有很好的保水性与重                       [14]  Ecaterina S D. Design and applications of interpenetrating polymer
            复操作性,重复操作数次也能保持性能,大大节约                                 network  hydrogels. A review[J]. Chemical Engineering Journal,
            了应用成本。                                                 2014, 243(5): 572-590.
                                                               [15]  Cui Li (崔莉), Jia Junfang (贾军芳), Xiong Zihao (熊子豪).
            参考文献:                                                  Preparation and  properties  of carboxymethyl chitosan and sodium
                                                                   alginate semi-interpenetrating hydrogels[J]. Acta Polymerica Sinica
            [1]   Wang Xiuli (汪秀丽), Zhang Yurong (张玉荣), Wang Yuzhong (王玉
                                                                   (高分子学报), 2014, (3): 361-368.
                 忠). Research progress of  starch-based polymer  materials[J]. Acta
                                                               [16]  Dragan E S, Loghin D F  A. Enhanced sorption  of methylene blue
                 Polymerica Sinica (高分子学报), 2011, (1): 24-37.
                                                                   from aqueous solutions by semi-IPN composite cryogels with
            [2]   Zhu Baodong (祝宝东), Wang Jian (王鉴), Dong Qun (董群), et al.
                                                                   anionically  modified potato starch entrapped in PAAm  matrix[J].
                 Synthesis and  properties of starch  superabsorbents[J]. Chemical
                                                                   Chemical Engineering Journal, 2013, 234(1): 211-222.
                 Industry and Engineering (化学工业与工程), 2010, 27(4): 329-333.
                                                               [17]  Liu Yan (刘艳). Preparation and properties study of starch grafted
            [3]   Zhang Min (张敏), Li Bichan (李碧婵), Chen Liangbi (陈良壁).
                                                                   acrylic  acid/tourmaline superabsorbent[D]. Harbin Institute of
                 Progress in preparation  of  interpenetrating polymer network
                 hydrogels and their application in adsorption[J]. Chemical Industry   Technology (哈尔滨工业大学), 2008.
                                                               [18]  Zhang Ming ( 张明 ). Synthesis and surface modification  of
                 and Engineering Progress (化工进展), 2015, (4): 1043-1049, 1087.
            [4]   Hu Xin, Lu Lingling, Chen Xu,  et al. Mechanically tough   P(AA-AM)/layered  mineral composite superabsorbent[D].  East
                                                                   China University of Science and Technology (华东理工大学), 2015.
                 biomacromolecular IPN hydrogel  fibers by enzymatic  and ionic
                 crosslinking[J]. International Journal of Biological Macromolecules,   [19]  Jiang Zhaoyang (江照洋), Cai Huiwu (蔡会武), Wang Jinglu (王瑾
                 2015, 72: 403-409.                                璐). Study on synthesis of super absorbent resin of acrylic  acid/
            [5]   Ganesh C I, Stevin H G, Michael S D. The bioactivity of   starch/SPS interpenetrating network[J]. New Chemical Materials (化
                 agarose-PEGDA interpenetrating network hydrogels with covalently   工新型材料), 2009, 37(9): 79-82.
                 immobilized RGD  peptides and physically entrapped aggrecan[J].   [20]  Mehlika P, Nur T, Fatma K O. Swelling dynamics of IPN hydrogels
                 Biomaterials, 2014, 35 (11): 3558-3570.           including acrylamide-acrylic acid-chitosan and evaluation of their
            [6]   Cui Li, Jia Junfang, Guo Yi, et al. Preparation and characterization of   potential for controlled release of piperacillin-tazobactam[J]. Journal
                 IPN hydrogels composed of chitosan and  gelatin cross-linked  by   of Applied Polymer Science, 2011, 120(1): 441-450.
                 genipin[J]. Carbohydrate Polymers, 2014, 99(1): 31-38.   [21]  Gu Xuerong (顾雪蓉). Gel chemistry[M].  Chemical Industry Press
            [7]   Vudjung C, Chaisuwan U, Pangan U, et al. Effect of natural rubber   (化学工业出版社), 2005: 167-179.
                 contents on biodegradation and water absorption of interpenetrating   [22]  Wang J J, Hu H K, Yang Z L, et al. IPN hydrogel nanocomposites
                 polymer network (IPN) hydrogel from natural rubber and cassava   based on agarose and ZnO with antifouling and bactericidal
                 starch[J]. Energy Procedia. 2014, 56: 255-263.    properties[J]. Materials Science & Engineering C, 2016, 61: 376-386.
   144   145   146   147   148   149   150   151   152   153   154