Page 30 - 201812
P. 30

·1998·                            精细化工   FINE CHEMICALS                                  第 35 卷

            为 0.00202%、0.00241%和 0.00213%。                         (2)在 APTES 浓度 46 g/L 和水热晶化次数为
                 由图 7 可见,该 13X 分子筛膜对二甲醚、甲醇、                    2 次时,所制备得到的 13X 分子筛膜最佳,其膜层
            丙醛 3 种杂质均具备较好的脱除性能,对二甲醚、                           厚度达到了 10~15  μm,均匀分布的分子筛粒径为
            甲醇、丙醛的穿透时间分别为 25.2、102 和 178 h,                    1~1.5 μm。
            对二甲醚、甲醇、丙醛 3 种杂质的吸附量分别达到                               (3)含二甲醚、甲醇、丙醛 3 种杂质的氮气和
            37.166、125.012 和 345.585 mg/g。此外,并没有观              乙烯原料气净化实验表明,该 13X 分子筛膜比颗粒
            察到明显的乙烯共吸附现象。                                      状 13X 分子筛吸附剂具备更佳的深度净化性能。乙

                                                               烯体系中,13X 分子筛膜对二甲醚、甲醇、丙醛的
                                                               穿透时间分别长达 25.2、102 和 178 h,吸附量分别
                                                               达到 37.166、125.012、345.585 mg/g。结果表明,
                                                               13X 分子筛膜作为替代颗粒状 13X 分子筛吸附剂在
                                                               深度净化气态轻质烯烃中含氧化物领域有着巨大的
                                                               应用前景。

                                                               参考文献:
                                                               [1]  ZhangYong (张勇). Progress in olefin technology (烯烃技术进展)
                                                                   [M].  Beijing: China Petrochemical Press (中国石化出版社), 2008:
                                                                   114-273.

            图 7   乙烯体系中 13X 分子筛膜对二甲醚、甲醇、丙醛杂                    [2]   Losch P, Pinar A B, Willinger M G, et al. H-ZSM-5 zeolite model
                                                                   crystals: Structure-diffusion-activity relationship  in methanol-to-
                  质吸附穿透曲线                                          olefins catalysis [J]. Journal of Catalysis, 2017, 345: 11-23.
            Fig. 7    Dimethyl ether, methanol and  propanal adsorption   [3]   Yu B Y, Chien I L. Design and optimization of the methanol-to-olefin
                   penetration curves in a C 2 H 4  system by 13X   process. part II: comparison  of  different methods  for  propylene/
                   molecular sieve membranes                       propane separation [J]. Chemical Engineering & Technology, 2016,
                                                                   39: 2304-2311.
                 再生次数对二甲醚脱除性能的影响见图 8。                          [4]   Bricker J C. Advanced catalytic dehydrogenation technologies for
                                                                   production of olefins [J]. Topics in Catalysis, 2012, 55: 1309-1314.
                 由图 8 分析可知,5 次使用后,该 13X 分子筛                    [5]   Yang Chunyu (杨春育), Huang Jianping  (晃建平), Huang Hairong
                                                                   ( 黄海蓉 ). Adsorption on zeilite of methanol from  liquid C 4
            膜仍旧能将初始摩尔分数为 0.002%的二甲醚杂质                              hydrocarbon [J]. Petrochemical Technology (石油化工), 2001, 30(9):
                                                                   695-698.
            深度脱除至摩尔分数为 0.0001%以下,脱除效果良                         [6]   Gorawara J. AIChE Spring Meeting and Global Congress on Process
            好稳定,适合于未来的工业化应用。该 13X 分子筛                              Safety [C]//Ethylene Plant Contaminants: Myths and War Stories,
                                                                   April, 26-30, 2009, Tampa, Florida, America. New  York: AIChE,
            膜良好稳定的杂质深度脱除性能,主要归因于其较                                 c2009: 1-16.
                                                               [7]   Wenten I G, Dharmawijaya P T,    Aryanti P T P,   et al. LTA zeolite
            佳的孔道结构及良好的热结构稳定性能。                                     membranes: current progress and challenges in pervaporation [J]. Rsc

                                                                   Advances, 2017, 47: 29520-29539.
                                                               [8]   Wang X R, Yang Z Z, Yu C L, et al. Preparation of T-type zeolite
                                                                   membranes using a dip-coating seeding suspension  containing
                                                                   colloidal SiO 2 [J]. Microporous & Mesoporous Materials, 2014, 197: 17-25.
                                                               [9]   Wang L, Zhang C, Gao X C, et al. Preparation of defect-free DDR
                                                                   zeolite membranes by eliminating template with ozone at low
                                                                   temperature [J]. Journal of Membrane Science, 2017, 539: 152-160.
                                                               [10]  Lin K Y  A, Wu  C H, Jochems  A  P. Adsorptive behaviors of
                                                                   methylimidazolium ionic liquids to a  Y-type zeolite in water:
                                                                   Kinetics, isotherms, thermodynamics and interferences [J]. Journal of
                                                                   Molecular Liquids, 2017, 232: 269-276.
                                                               [11]  Gup  Y J. Synthesis of  tubular faujasite X-type membranes with
                                                                   mullite supports and their gas permeances for N/CO  mixtures [J].
                                                                   Separation Science & Technology, 2011, 46(11): 1716-1725.
                                                               [12]  Yang S W, Cao Z S, Arvanitis A, et al. DDR-type zeolite membrane
                                                                   synthesis, modification and gas permeation studies [J].  Journal of
            图 8   乙烯体系中 13X 分子筛膜再生次数对二甲醚脱除                         Membrane Science, 2016, 505: 194-204.
                  性能的影响                                        [13]  Li L Q, Yang J H, Li J J, et al. High performance ZSM-5 membranes
            Fig. 8    Dimethyl  ether adsorption penetration curves in a   on coarse macroporous α-Al 2O 3 supports for dehydration of alcohols
                                                                   [J]. AICHE Journal, 2016, 62(8): 2813-2824.
                   C 2 H 4  system with different regeneration times of   [14]  Mundstock A, Wang N Y, Frieb S, et al. Propane/propene permeation
                   13X molecular sieve membranes                   through Na-X membranes: the interplay of separation  performance
                                                                   and pre-synthetic  support functionalization [J]. Microporous and
                                                                   Mesoporous Materials, 2015, 215: 20-28.
            3   结论                                             [15]  Huang A, Wang N, Caro J. Seeding-free synthesis of dense zeolite
                                                                   FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina
                 (1)运用了 APTES 表面改性,真空溶胶预涂                          supports [J]. Journal of Membrane Science, 2012, 389: 272-279.
                                                               [16]  Guillou F, Rouleau L, Pirngruber G,  et al. Synthesis of FAU-type
            覆,低温干燥以及水热晶化的方法,成功地制备出了                                zeolite membrane: an originalin situ process focusing on the
                                                                   rheological control of gel-like precursor species [J]. Microporous and
            密实连续均匀且无孔或裂纹存在的 13X 分子筛膜层。                             Mesoporous Materials, 2009, 119(1/2/3): 1-8.
   25   26   27   28   29   30   31   32   33   34   35