Page 30 - 201812
P. 30
·1998· 精细化工 FINE CHEMICALS 第 35 卷
为 0.00202%、0.00241%和 0.00213%。 (2)在 APTES 浓度 46 g/L 和水热晶化次数为
由图 7 可见,该 13X 分子筛膜对二甲醚、甲醇、 2 次时,所制备得到的 13X 分子筛膜最佳,其膜层
丙醛 3 种杂质均具备较好的脱除性能,对二甲醚、 厚度达到了 10~15 μm,均匀分布的分子筛粒径为
甲醇、丙醛的穿透时间分别为 25.2、102 和 178 h, 1~1.5 μm。
对二甲醚、甲醇、丙醛 3 种杂质的吸附量分别达到 (3)含二甲醚、甲醇、丙醛 3 种杂质的氮气和
37.166、125.012 和 345.585 mg/g。此外,并没有观 乙烯原料气净化实验表明,该 13X 分子筛膜比颗粒
察到明显的乙烯共吸附现象。 状 13X 分子筛吸附剂具备更佳的深度净化性能。乙
烯体系中,13X 分子筛膜对二甲醚、甲醇、丙醛的
穿透时间分别长达 25.2、102 和 178 h,吸附量分别
达到 37.166、125.012、345.585 mg/g。结果表明,
13X 分子筛膜作为替代颗粒状 13X 分子筛吸附剂在
深度净化气态轻质烯烃中含氧化物领域有着巨大的
应用前景。
参考文献:
[1] ZhangYong (张勇). Progress in olefin technology (烯烃技术进展)
[M]. Beijing: China Petrochemical Press (中国石化出版社), 2008:
114-273.
图 7 乙烯体系中 13X 分子筛膜对二甲醚、甲醇、丙醛杂 [2] Losch P, Pinar A B, Willinger M G, et al. H-ZSM-5 zeolite model
crystals: Structure-diffusion-activity relationship in methanol-to-
质吸附穿透曲线 olefins catalysis [J]. Journal of Catalysis, 2017, 345: 11-23.
Fig. 7 Dimethyl ether, methanol and propanal adsorption [3] Yu B Y, Chien I L. Design and optimization of the methanol-to-olefin
penetration curves in a C 2 H 4 system by 13X process. part II: comparison of different methods for propylene/
molecular sieve membranes propane separation [J]. Chemical Engineering & Technology, 2016,
39: 2304-2311.
再生次数对二甲醚脱除性能的影响见图 8。 [4] Bricker J C. Advanced catalytic dehydrogenation technologies for
production of olefins [J]. Topics in Catalysis, 2012, 55: 1309-1314.
由图 8 分析可知,5 次使用后,该 13X 分子筛 [5] Yang Chunyu (杨春育), Huang Jianping (晃建平), Huang Hairong
( 黄海蓉 ). Adsorption on zeilite of methanol from liquid C 4
膜仍旧能将初始摩尔分数为 0.002%的二甲醚杂质 hydrocarbon [J]. Petrochemical Technology (石油化工), 2001, 30(9):
695-698.
深度脱除至摩尔分数为 0.0001%以下,脱除效果良 [6] Gorawara J. AIChE Spring Meeting and Global Congress on Process
好稳定,适合于未来的工业化应用。该 13X 分子筛 Safety [C]//Ethylene Plant Contaminants: Myths and War Stories,
April, 26-30, 2009, Tampa, Florida, America. New York: AIChE,
膜良好稳定的杂质深度脱除性能,主要归因于其较 c2009: 1-16.
[7] Wenten I G, Dharmawijaya P T, Aryanti P T P, et al. LTA zeolite
佳的孔道结构及良好的热结构稳定性能。 membranes: current progress and challenges in pervaporation [J]. Rsc
Advances, 2017, 47: 29520-29539.
[8] Wang X R, Yang Z Z, Yu C L, et al. Preparation of T-type zeolite
membranes using a dip-coating seeding suspension containing
colloidal SiO 2 [J]. Microporous & Mesoporous Materials, 2014, 197: 17-25.
[9] Wang L, Zhang C, Gao X C, et al. Preparation of defect-free DDR
zeolite membranes by eliminating template with ozone at low
temperature [J]. Journal of Membrane Science, 2017, 539: 152-160.
[10] Lin K Y A, Wu C H, Jochems A P. Adsorptive behaviors of
methylimidazolium ionic liquids to a Y-type zeolite in water:
Kinetics, isotherms, thermodynamics and interferences [J]. Journal of
Molecular Liquids, 2017, 232: 269-276.
[11] Gup Y J. Synthesis of tubular faujasite X-type membranes with
mullite supports and their gas permeances for N/CO mixtures [J].
Separation Science & Technology, 2011, 46(11): 1716-1725.
[12] Yang S W, Cao Z S, Arvanitis A, et al. DDR-type zeolite membrane
synthesis, modification and gas permeation studies [J]. Journal of
图 8 乙烯体系中 13X 分子筛膜再生次数对二甲醚脱除 Membrane Science, 2016, 505: 194-204.
性能的影响 [13] Li L Q, Yang J H, Li J J, et al. High performance ZSM-5 membranes
Fig. 8 Dimethyl ether adsorption penetration curves in a on coarse macroporous α-Al 2O 3 supports for dehydration of alcohols
[J]. AICHE Journal, 2016, 62(8): 2813-2824.
C 2 H 4 system with different regeneration times of [14] Mundstock A, Wang N Y, Frieb S, et al. Propane/propene permeation
13X molecular sieve membranes through Na-X membranes: the interplay of separation performance
and pre-synthetic support functionalization [J]. Microporous and
Mesoporous Materials, 2015, 215: 20-28.
3 结论 [15] Huang A, Wang N, Caro J. Seeding-free synthesis of dense zeolite
FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina
(1)运用了 APTES 表面改性,真空溶胶预涂 supports [J]. Journal of Membrane Science, 2012, 389: 272-279.
[16] Guillou F, Rouleau L, Pirngruber G, et al. Synthesis of FAU-type
覆,低温干燥以及水热晶化的方法,成功地制备出了 zeolite membrane: an originalin situ process focusing on the
rheological control of gel-like precursor species [J]. Microporous and
密实连续均匀且无孔或裂纹存在的 13X 分子筛膜层。 Mesoporous Materials, 2009, 119(1/2/3): 1-8.