Page 75 - 201807
P. 75
第 7 期 傅 燕,等: 环糊精增强金属卟啉/蒽衍生物上转换及其应用 ·1143·
材料), 2014, 15 (6): 21-26. [19] Wen Dijiang (闻荻江), Wang Xiaomei (王筱梅), Pan Kejun (潘科
[13] Singh-Rachford T N, Castellano F N, Photon upconversion based on 君), et al. Synthesis and fluorescence properties of 1,4-bis (4'-N,
sensitized triplet-triplet annihiliation[J]. Coord Chem Rev, 2010, 254: N-dimethylaminostyryl) naphthalene[J]. Journal of Image Science
2560-2573. and Photochemistry (感光科学与光化学), 2003, 21(4): 255-261.
[14] Wang B, Sun B, Wang X M, et al. Efficient triplet sensitizers of [20] Ye C Q, Wang J J, Wang X M, et al. A new medium for triplet-triplet
palladium ( Ⅱ ) tetraphenylporphyrins for upconversion-powered annihilated upconversion and photocatalytic application[J]. Phys
photoelectrochemistry[J]. J Phys Chem C, 2014, 118(3): 1417-1425. Chem Chem Phys, 2016, 18(5): 3430-3438.
[15] So K H, Park H T, Shin S C, et al. Synthesis and characterization of [21] Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active
new anthracene-based blue host material[J]. Bull Korean Chem Soc, oxidative species in TiO 2 photocatalysis using the fluorescence
2009, 30(7): 1611-1617. technique[J]. Electrochem Commun, 2000, 2(3): 207-210.
[16] Chen G Y, Seo J W, Yang C H, et al. Nanochemistry and [22] Huang H, Yue Z K, Song Y J, et al. Mesoporous tungsten oxides as
nanomaterials for photovoltaics[J]. Chem Soc Rev, 2013, 42(6): photocatalysts for O 2 evolution under irradiation of visible light[J].
8304-8338. Materials Letters,2012, 88(8): 57-60.
[17] Georges Ischer M. Fluorescence quantum yield of Rhodamine 6G in [23] Simkovitch R, Silva L P, Silva J C G E, et al. Comparison of the
ethanol as a function of concentration using thermal lens photoprotolytic processes of three 7-hydroxycoumarins[J]. J Phys
spectrometry[J]. J Chem Phys Lett, 1996, 260(1): 115-118. Chem B, 2016, 120(39): 10297-10310.
[18] Zhao J Z, Ji S M, Guo H M. Triplet-triplet annihilation based [24] Kim J H, Kim J H. Encapsulated triplet-triplet annihilation-based
upconversion: from triplet sensitizers and triplet acceptors to upconversion in the aqueous phase for sub-band-gap semiconductor
upconversion quantum yields[J]. RSC Advances, 2011, 1(6): 937-950. photocatalysis[J]. J Am Chem Soc, 2012, 134(42): 17478-17481.
(上接第 1135 页) rheology[M]. Advances in Food Rheology & Its Applications. UK:
Woodhead , 2017: 177-208.
[7] Pang Jie (庞杰), Lin Qiong (林琼), Zhang Fusheng (张甫生), et al. [21] Rao M A. Flow and functional models for rheological properties of
Research and application progress of konjac glucomannan functional
materials[J]. Chinese Journal of Structural Chemistry (结构化学), fluid foods[M]// Rheology of Fluid, Semisolid, and Solid Foods.
2003, 22(6): 633-642. Springer US, 2014: 27-58.
[8] Behera S S, Ray R C. Konjac glucomannan, a promising [22] Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating
polysaccharide of Amorphophallus konjac, K. Koch in health care[J]. biopolymer and sustainable raw material[J]. Angewandte Chemie
International Journal of Biological Macromolecules, 2016, 92: International Edition, 2005, 44(22): 3358-3393.
942-956. [23] Khafagi M. Investigation studies of microwave effect on structure of
[9] Zhang C, Chen J D, Yang F Q. Konjac glucomannan, a promising cellulosic fibers II[J]. International Journal of Chemtech Research,
polysaccharide for OCDDS[J]. Carbohydrate Polymers, 2014, 2016, 9(12): 383-391.
104(1): 175-181. [24] Hamad W Y. Assembly and structure in native cellulosic fibers[M].
[10] Jin W, Jiang Y, Huang Q, et al. Konjac glucomannan: a promising Cellulose Nanocrystals. John Wiley & Sons, Ltd, 2017: 16-32.
functional food ingredient[C]// Institute of Food Technologists [25] Wu Jiang (吴江). Preparation, properties and application of alpha
Meeting, 2015. cellulose membrane[D]. Dalian: Graduate University of Chinese
[11] Wang L X, Pang J. Research progress in irreversible gel of konjac Academy of Sciences: Dalian Institute of Chemical Physics(中国科
glucomannan and its related problems[J]. Journal of Food Safety & 学院研究生院: 大连化学物理研究所): 2002.
Quality, 2012(5): 387-391. [26] Wang S, Xia Z, Hu Y, et al. Co-pyrolysis mechanism of seaweed
[12] Chen J, Zhang W, Li X. Adsorption of Cu(Ⅱ) ion from aqueous polysaccharides and cellulose based on macroscopic experiments and
solutions on hydrogel prepared from konjac glucomannan[J]. molecular simulations[J]. Bioresource Technology, 2017, 228: 305-
Polymer Bulletin, 2015, 73(7): 1965-1984. 314.
[13] Yuan Y, Yan Z, Mu R J, et al. The effects of graphene oxide on the [27] Diao Y, Song M, Zhang Y, et al. Enzymic degradation of
properties and drug delivery of konjac glucomannan hydrogel[J]. hydroxyethyl cellulose and analysis of the substitution pattern along
Journal of Applied Polymer Science, 2017, 134(38). https://doi.org/ the polysaccharide chain[J]. Carbohydrate Polymers, 2017, 169: 92-
10.1002/app.45327.DOI:10.1002/app.45327. 100.
[14] Sangfai T, Tantishaiyakul V, Hirun N, et al. Preparation and [28] Jian W, Wu H, Wu L, et al. Effect of molecular characteristics of
characterization of к-carrageenan and xyloglucan blends for konjac glucomannan on gelling and rheological properties of tilapia
sustained release of a hydrophilic drug[J]. Polymer Bulletin, 2015, myofibrillar protein[J]. Carbohydrate Polymers, 2016, 150: 21-31.
72(7): 1647-1661. [29] Núñez-Santiago M D C, Tecante A. Rheological and calorimetric
[15] Pang J. Research advances in konjac glucomannan gel and its study of the sol–gel transition of κ-carrageenan[J]. Carbohydrate
problem[J]. Journal of Chinese Institute of Food Science & Polymers, 2007, 69(4): 763-773.
Technology, 2011, 11(9): 181-187. [30] Chen Han, Mu Ruojun, Pang Jie, et al. Influence of topology
[16] Gao S, Guo J, Nishinari K. Thermoreversible konjac glucomannan structure on the stability of konjac glucomannan nano gel
gel crosslinked by borax[J]. Carbohydrate Polymers, 2008, 72(2): microfibril[J]. Chinese Journal of Structural Chemistry, 2015,
315-325. 34(12): 1939-1941.
[17] Wang L, Jiang Y, Lin Y, et al. Rheological properties and formation [31] Pang Jie, Ma Zhen, Shen Benshu, et al. Hydrogen bond networks'
mechanism of DC electric fields induced konjac glucomannan- QSAR and topological analysis of konjac glucomannan chains[J].
tungsten gels[J]. Carbohydrate Polymers, 2016, 142: 293-299. Chinese Journal of Structural Chemistry, 2014, 33(3): 480-489.
[18] Fan L, Yi J, Tong J, et al. Preparation and characterization of [32] Zhang L M, Zhou J F, Hui P S. Thickening, shear thinning and
oxidized konjac glucomannan/carboxymethyl chitosan/graphene thixotropic behavior of a new polysaccharide-based polyampholyte
oxide hydrogel[J]. International Journal of Biological Macromolecules, in aqueous solutions[J]. Colloids and Surfaces A: Physicochemical
2016, 91: 358-367. and Engineering Aspects, 2005, 259(1): 189-195.
[19] Li Z, Su Y, Haq M A, et al. Konjac glucomannan/polyacrylamide [33] Mierczyńska J, Cybulska J, Pieczywek P M, et al. Effect of storage
bicomponent hydrogels: Self-healing originating from semi- on rheology of water-soluble, chelate-soluble and diluted alkali-
interpenetrating network[J]. Polymer, 2016, 103: 146-151. soluble pectin in carrot cell walls[J]. Food & Bioprocess Technology,
[20] Tornberg E. Influence of fibers and particle size distribution on food 2015, 8(1): 171-180.