Page 75 - 201807
P. 75

第 7 期                    傅   燕,等:  环糊精增强金属卟啉/蒽衍生物上转换及其应用                                ·1143·


                 材料), 2014, 15 (6): 21-26.                     [19]  Wen Dijiang (闻荻江),  Wang Xiaomei (王筱梅), Pan Kejun (潘科
            [13]  Singh-Rachford T N, Castellano F N, Photon upconversion based on   君),  et al. Synthesis and fluorescence properties of 1,4-bis (4'-N,
                 sensitized triplet-triplet annihiliation[J]. Coord Chem Rev, 2010, 254:   N-dimethylaminostyryl) naphthalene[J]. Journal of Image Science
                 2560-2573.                                        and Photochemistry (感光科学与光化学), 2003, 21(4): 255-261.
            [14]  Wang B, Sun B,  Wang X M,  et al.  Efficient triplet sensitizers of   [20]  Ye C Q, Wang J J, Wang X M, et al. A new medium for triplet-triplet
                 palladium ( Ⅱ )  tetraphenylporphyrins for upconversion-powered   annihilated upconversion and  photocatalytic application[J]. Phys
                 photoelectrochemistry[J]. J Phys Chem C, 2014, 118(3): 1417-1425.   Chem Chem Phys, 2016, 18(5): 3430-3438.
            [15]  So K H, Park H T, Shin S C, et al. Synthesis and characterization of   [21]  Ishibashi K, Fujishima  A, Watanabe T,  et al. Detection of active
                 new anthracene-based blue host material[J]. Bull Korean Chem Soc,   oxidative species in  TiO 2 photocatalysis using the fluorescence
                 2009, 30(7): 1611-1617.                           technique[J]. Electrochem Commun, 2000, 2(3): 207-210.
            [16]  Chen G  Y, Seo J W,  Yang C H,  et al. Nanochemistry and   [22]  Huang H, Yue Z K, Song Y J, et al. Mesoporous tungsten oxides as
                 nanomaterials for photovoltaics[J]. Chem Soc Rev, 2013, 42(6):   photocatalysts for O 2 evolution under irradiation of visible light[J].
                 8304-8338.                                        Materials Letters,2012, 88(8): 57-60.
            [17]  Georges Ischer M. Fluorescence quantum yield of Rhodamine 6G in   [23]  Simkovitch R, Silva  L P, Silva J C G E, et al. Comparison of the
                 ethanol as a function of concentration using thermal lens   photoprotolytic processes of three 7-hydroxycoumarins[J]. J Phys
                 spectrometry[J]. J Chem Phys Lett, 1996, 260(1): 115-118.   Chem B, 2016, 120(39): 10297-10310.
            [18]  Zhao J Z, Ji S  M, Guo H M. Triplet-triplet annihilation based   [24]  Kim J H, Kim J  H. Encapsulated triplet-triplet annihilation-based
                 upconversion: from triplet sensitizers and triplet acceptors to   upconversion in the aqueous phase for sub-band-gap semiconductor
                 upconversion quantum yields[J]. RSC Advances, 2011, 1(6): 937-950.     photocatalysis[J]. J Am Chem Soc, 2012, 134(42): 17478-17481.

            (上接第 1135 页)                                           rheology[M]. Advances in Food Rheology & Its Applications. UK:
                                                                   Woodhead , 2017: 177-208.
            [7]   Pang Jie (庞杰), Lin Qiong (林琼), Zhang Fusheng (张甫生), et al.   [21]  Rao M A. Flow and functional models for rheological properties of
                 Research and application progress of konjac glucomannan functional
                 materials[J]. Chinese Journal of Structural Chemistry (结构化学),  fluid foods[M]// Rheology of Fluid, Semisolid, and Solid Foods.
                 2003, 22(6): 633-642.                             Springer US, 2014: 27-58.
            [8]   Behera S S, Ray R  C. Konjac glucomannan, a promising   [22]  Klemm D,  Heublein B, Fink H P,  et al. Cellulose: fascinating
                 polysaccharide of Amorphophallus konjac, K. Koch in health care[J].   biopolymer and sustainable raw material[J]. Angewandte Chemie
                 International Journal of Biological  Macromolecules, 2016, 92:   International Edition, 2005, 44(22): 3358-3393.
                 942-956.                                      [23]  Khafagi M. Investigation studies of microwave effect on structure of
            [9]   Zhang C, Chen J  D,  Yang F Q. Konjac glucomannan, a  promising   cellulosic fibers II[J]. International Journal of Chemtech Research,
                 polysaccharide for OCDDS[J]. Carbohydrate Polymers, 2014,   2016, 9(12): 383-391.
                 104(1): 175-181.                              [24]  Hamad W Y. Assembly and structure in native cellulosic fibers[M].
            [10]  Jin W, Jiang Y, Huang Q, et al. Konjac glucomannan: a promising   Cellulose Nanocrystals. John Wiley & Sons, Ltd, 2017: 16-32.
                 functional food ingredient[C]// Institute of Food Technologists   [25]  Wu Jiang (吴江). Preparation, properties and application of alpha
                 Meeting, 2015.                                    cellulose membrane[D]. Dalian: Graduate University of Chinese
            [11]  Wang L X, Pang J. Research progress in irreversible gel of konjac   Academy of Sciences: Dalian Institute of Chemical Physics(中国科
                 glucomannan and its related problems[J]. Journal of Food Safety &   学院研究生院:  大连化学物理研究所): 2002.
                 Quality, 2012(5): 387-391.                    [26]  Wang S, Xia Z, Hu Y,  et al. Co-pyrolysis mechanism  of seaweed
            [12]  Chen J, Zhang W, Li X.  Adsorption  of Cu(Ⅱ) ion from aqueous   polysaccharides and cellulose based on macroscopic experiments and
                 solutions on hydrogel prepared from  konjac glucomannan[J].   molecular simulations[J]. Bioresource Technology, 2017, 228: 305-
                 Polymer Bulletin, 2015, 73(7): 1965-1984.         314.
            [13]  Yuan Y, Yan Z, Mu R J, et al. The effects of graphene oxide on the   [27]  Diao Y, Song M, Zhang Y,  et al. Enzymic degradation of
                 properties and drug delivery of konjac glucomannan hydrogel[J].   hydroxyethyl cellulose and analysis of the substitution pattern along
                 Journal of Applied Polymer Science, 2017, 134(38). https://doi.org/   the polysaccharide chain[J]. Carbohydrate Polymers, 2017, 169: 92-
                 10.1002/app.45327.DOI:10.1002/app.45327.          100.
            [14]  Sangfai T, Tantishaiyakul V, Hirun N,  et al. Preparation and   [28]  Jian W, Wu H, Wu L, et al. Effect of molecular characteristics of
                 characterization of  к-carrageenan and xyloglucan blends for   konjac glucomannan on gelling and rheological properties of tilapia
                 sustained release of a hydrophilic drug[J]. Polymer  Bulletin, 2015,   myofibrillar protein[J]. Carbohydrate Polymers, 2016, 150: 21-31.
                 72(7): 1647-1661.                             [29]  Núñez-Santiago M D C, Tecante A.  Rheological and calorimetric
            [15]  Pang J. Research  advances in konjac glucomannan gel and its   study of the sol–gel transition of  κ-carrageenan[J]. Carbohydrate
                 problem[J]. Journal of Chinese Institute of  Food Science &   Polymers, 2007, 69(4): 763-773.
                 Technology, 2011, 11(9): 181-187.             [30]  Chen Han, Mu Ruojun, Pang Jie,  et al. Influence of topology
            [16]  Gao S, Guo J, Nishinari K. Thermoreversible konjac glucomannan   structure on the stability of konjac glucomannan nano gel
                 gel crosslinked by borax[J]. Carbohydrate Polymers, 2008, 72(2):   microfibril[J]. Chinese Journal of  Structural Chemistry, 2015,
                 315-325.                                          34(12): 1939-1941.
            [17]  Wang L, Jiang Y, Lin Y, et al. Rheological properties and formation   [31]  Pang Jie, Ma Zhen, Shen Benshu,  et al. Hydrogen bond networks'
                 mechanism of DC electric fields induced konjac glucomannan-   QSAR and topological analysis of konjac glucomannan  chains[J].
                 tungsten gels[J]. Carbohydrate Polymers, 2016, 142: 293-299.   Chinese Journal of Structural Chemistry, 2014, 33(3): 480-489.
            [18]  Fan L, Yi J, Tong J,  et al. Preparation and characterization of   [32]  Zhang L M, Zhou J F, Hui P  S. Thickening, shear thinning and
                 oxidized konjac glucomannan/carboxymethyl chitosan/graphene   thixotropic behavior of a new polysaccharide-based polyampholyte
                 oxide hydrogel[J]. International Journal of Biological Macromolecules,   in aqueous solutions[J]. Colloids and Surfaces A: Physicochemical
                 2016, 91: 358-367.                                and Engineering Aspects, 2005, 259(1): 189-195.
            [19]  Li Z, Su Y, Haq  M A,  et al. Konjac glucomannan/polyacrylamide   [33] Mierczyńska J, Cybulska J, Pieczywek P M, et al. Effect of storage
                 bicomponent hydrogels: Self-healing originating from semi-   on rheology of water-soluble, chelate-soluble and diluted alkali-
                 interpenetrating network[J]. Polymer, 2016, 103: 146-151.   soluble pectin in carrot cell walls[J]. Food & Bioprocess Technology,
            [20]  Tornberg E. Influence of fibers and particle size distribution on food   2015, 8(1): 171-180.
   70   71   72   73   74   75   76   77   78   79   80