Page 18 - 201808
P. 18

·1266·                            精细化工   FINE CHEMICALS                                  第 35 卷

                 [J]. J Power Sources, 2015, 293: 823-830.     [21]  Jiang R,  Tran D T, McClure J P,  et al. A class of  (Pd-Ni-P)
            [5]   Wang Y, Wang G, Li G, et al. Pt–Ru catalyzed hydrogen oxidation in   electrocatalysts for the ethanol oxidation reaction in alkaline media
                 alkaline media: Oxophilic effect or electronic effect?  [J]. Energy   [J]. ACS Catal, 2014, 4(8): 2577-2586.
                 Environ Sci, 2015, 8(1): 177-181.             [22]  Cao Xiaolu (曹晓璐), Wang Longlong (王龙龙), Wang Yajun (王亚
            [6]   Zhao Boqi (赵博琪), Chen Weimin (陈维民), Zhang Yu (张宇), et al.   骏 ),  et al. Facile preparation of amino-modified  Pd/TiO 2/C
                 Methanol electrocatalytic oxidation  on PdRu/MWCNT in alkaline   nanocatalyst and its electrocatalytic performance for ethanol
                 medium [J]. Chinese Journal of Power Sources(电源技术), 2015,   oxidation in alkaline solution [J]. Chemical Journal of Chinese
                 39(4): 772-774.                                   Universities (高等学校化学学报), 2015, 36(6): 1187-1193.
            [7]   Zhang Z, Xin L, Sun K,  et al.  Pd-Ni electrocatalysts for efficient   [23]  Li L, Scott K,  Yu E H. A direct glucose alkaline fuel  cell using
                 ethanol oxidation reaction in alkaline electrolyte [J]. Int J Hydrogen   MnO 2-carbon nanocomposite supported gold catalyst for anode
                 Energy, 2011, 36(20): 12686-12697.                glucose oxidation [J]. J Power Sources, 2013, 221: 1-5.
            [8]  Zhao  Shihuai (赵世怀), Zhang Xuping (张旭平), Hou Shujin (侯树  [24]  Rizo R, Sebastián D, Lázaro M J,  et al. On the design of Pt-Sn
                 金),  et al. Performance of anodic pd-Ni/C catalyst prepared by   efficient catalyst for carbon monoxide and ethanol oxidation in acid
                 reduction [J]. Fine Chemicals (精细化工), 2017, 34(2): 198-202, 226.     and alkaline media [J]. Appl Catal B: Environ, 2017, 200: 246-254.
            [9]   Li L, Chen  M, Huang G,  et al.  A green  method to prepare Pd-Ag   [25]  Oh  Y, Kim S K,  Peck D H,  et al. Improved  performance using
                 nanoparticles supported  on  reduced graphene oxide  and their   tungsten carbide/carbon nanofiber based anode catalysts for alkaline
                 electrochemical  catalysis of methanol and ethanol oxidation [J]. J   direct ethanol  fuel  cells [J]. Int J Hydrogen Energy, 2014, 39(28):
                 Power Sources, 2014, 263: 13-21.                  15907-15912.
            [10]  Rostami H, Omrani A, Rostami A A. On the role of electrodeposited   [26]  Ghouri Z K, Barakat N  A M, Obaid  M,  et al. Co/CeO 2-decorated
                 nanostructured Pd-Co alloy on Au for the electrocatalytic oxidation   carbon nanofibers as effective non-precious electro-catalyst for fuel
                 of glycerol in alkaline media [J]. Int J Hydrogen Energy, 2015,   cells application in alkaline medium  [J]. Ceram Int, 2015, 41(2):
                 40(30): 9444-9451.                                2271-2278.
            [11]  Mukherjee P, Roy P S, Mandal K, et al. Improved catalysis of room   [27]  Ghouri Z K, Barakat N A M, Park M,  et al. Synthesis and
                 temperature synthesized Pd-Cu alloy nanoparticles for anodic   characterization of Co/SrCO 3 nanorods-decorated carbon nanofibers
                 oxidation of ethanol in alkaline media [J]. Electrochim Acta, 2015,   as novel electrocatalyst for methanol oxidation in alkaline medium
                 154: 447-455.                                     [J]. Ceram Int, 2015, 41(5): 6575-6582.
            [12]  Sakamoto T, Asazawa K, Sanabria-Chinchilla J, et al. Combinatorial   [28]  Ghouri Z K, Barakat N A M, Kim  H Y,  et al. Nano-engineered
                 discovery of Ni-based binary and ternary catalysts for hydrazine   ZnO/CeO 2 dots@ CNFs for fuel cell application [J]. Arab J Chem,
                 electrooxidation for use in anion exchange membrane fuel cells [J]. J   2016, 9(2): 219-228.
                 Power Sources, 2014, 247: 605-611.            [29]  Villers D, Sun S  H, Serventi  A M,  et al.  Characterization of Pt
            [13]  Sakamoto  T, Asazawa K, Martinez  U,  et al. Electrooxidation of   nanoparticles deposited onto carbon  nanotubes  grown  on carbon
                 hydrazine hydrate using Ni-La catalyst for anion exchange   paper and evaluation of this electrode for the reduction of oxygen [J].
                 membrane fuel cells [J]. J Power Sources, 2013, 234: 252-259.     J Phy Chem B, 2006, 110(51): 25916-25925.
            [14]  Meyer S, Saborowski S, Schäfer B.  Photocatalytic reforming of   [30]  Geraldes A N, da Silva D F, da Silva J C M, et al. Palladium and
                 methanol by spatially separated Pd particles on special TiO 2 layers   palladium-tin supported on multi wall carbon nanotubes or carbon for
                 [J]. Chemphyschem, 2010, 7(3): 572-574.           alkaline direct ethanol fuel cell [J]. J Power Sources, 2015, 275:
            [15]  Chen H T, Choi Y M, Liu M, et al. A theoretical study of surface   189-199.
                 reduction mechanisms of CeO (2)(111) and  (110) by H (2) [J].   [31] Zou Tao (邹涛), Yi Qingfeng (易清风), Zhang Yuanyuan (张媛媛),
                 Chemphyschem, 2007, 8(6): 849-855.                et al. A new formic acid/iron ion fuel cell [J]. Chemical Journal of
            [16]  Ahmed M S, Park D, Jeon S. Ultrasmall Pd mMn 1−mO x binary alloyed   Chinese Universities (高等学校化学学报), 2016, 38(1): 101-107.
                 nanoparticles on graphene catalysts for ethanol oxidation in alkaline   [32]  Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J].
                 media [J]. J Power Sources, 2016, 308: 180-188.     Nano Lett, 2008, 8(10): 3498-3502.
            [17]  Zhou Debi (周德璧), Yu  Hongying (于红英), Zhu Hongmei (朱红  [33]  Sakhaee-Pour A. Elastic properties of single-layered graphene sheet
                 梅), et al. Direct ethanol fuel cell with Pd-MoO 2/C as anode catalyst   [J]. Solid State Commun, 2009, 149(1): 91-95.
                 [J]. Chinese Journal of Power Sources (电源技术), 2014, 38(9):   [34]  Sun C L,  Tang J S,  Brazeau  N,  et al. Particle size  effects of
                 1655-1656.                                        sulfonated graphene supported Pt nanoparticles on ethanol
            [18]  Mao H, Wang L, Zhu P, et al. Carbon-supported PdSn-SnO 2 catalyst   electrooxidation [J]. Electrochim Acta, 2015, 162: 282-289.
                 for ethanol electro-oxidation in alkaline  media [J]. Int J Hydrogen   [35]  Rostami  H,  Rostami A A, Omrani  A. Investigation on ethanol
                 Energy, 2014, 39(31): 17583-17588.                electrooxidation via electrodeposited Pd-Co nanostructures supported
            [19]  Li N, Zeng Y X, Chen S, et al. Ethanol oxidation on Pd/C enhanced   on graphene oxide [J]. Int J Hydrogen Energy, 2015, 40(33): 10596-
                 by MgO in alkaline  medium [J]. Int J Hydrogen Energy, 2014,   10604.
                 39(28): 16015-16019.                          [36]  Godoi D R M,  Villullas H M, Zhu F C,  et al. A  comparative
            [20]  Lu G P, Ma X B, Yang H F, et al. Highly active Pt catalysts promoted   investigation of metal-support interactions on the catalytic activity of
                 by molybdenum-doped SnO 2 for methanol electrooxidation [J]. Int J   Pt nanoparticles for ethanol oxidation in alkaline  medium [J]. J
                 Hydrogen Energy, 2015, 40(17): 5889-5896.         Power Sources, 2016, 311: 81-90.
   13   14   15   16   17   18   19   20   21   22   23