Page 142 - 精细化工2019年第10期
P. 142

·2108·                            精细化工   FINE CHEMICALS                                  第 36 卷

                 涛), et al. Study on the effect of plasticizer glycerin on the properties   [14]  Zhang  Kaili  (张楷力),  Du  Yongguo  (堵永国), Wang  Zhen (王震).
                 of sweet potato starch film[J]. Journal of China Cereals and Oils (中  Summary of correlation between size and photoelectric properties of
                 国粮油学报), 2015, 30 (10): 15-20.                     silver nanowires for transparent electrode[J]. Precious Metals (贵金
            [5]   Gao Fei (高飞), Zhang Dongjie (张东杰), Li Zhijiang (李志江), et   属), 2016, 37(1): 68-75.
                 al. Study on preparation process parameters and properties of corn   [15]  Jiu Jingting, Wang Jun, Sugahara Tohru, et al. The effect of light and
                 cross-linked  starch-straw  fiber  composite  membrane[J].  Journal  of   humidity  on  the  stability  of  silver  nan-owire  transparent  electrodes
                 Heilongjiang Bayi Agricultural Reclamation University (黑龙江八一  [J]. RSC Advanced, 2015, 5: 27657-27664.
                 农垦大学学报), 2017, 29(2): 52-57.                  [16]  Mutiso  Rose  M,  Sherrott  Michelle  C,  Rathmell  Aaron  R,  et al.
            [6]   Wang Yun (王昀), Chen Xuemei (陈雪梅). Study on preparation and   Integrating  simulations  and  experiments  to  predict  sheet  resistance
                 growth  mechanism  of  silver  nanowires  by  alcohol  reduction[J].   and  optical  transmittance  in  nanowire  films  for  transparent
                 Journal  of  Chinese  Electron  Microscopy  Society  (电子显微学报),   conductors[J]. ACS Nano, 2013, 7(9): 7654-7663.
                 2017, 36(4): 336-341.                         [17]  Liu Caihong, Yu Xun. Silver nanowire-based transparent, flexible, and
            [7]   Peng Yongyi (彭勇宜), Xu Guojun (徐国钧), Dai Guozhang (代国  conductive thin film[J]. Nanoscale Research Letters, 2011, 6(1): 1-8.
                 章), et al. Study on polyol preparation conditions of silver nanowires   [18]  Liang Shuhua (梁树华), Wei Wenfei (卫文飞), He Gang (何岗), et
                 [J]. Materials Guide (材料导报), 2015, 29 (22): 79-81, 86.     al.  Preparation  of  silver  nanowires  and  transparent  conductive
            [8]   Dong Lina, Wang Wenyan, Chen Jinghuang, et al. Silver nanowire   films[J]. Journal of Silicate (硅酸盐学报), 2016, 44(5): 707-710.
                 netknitted  anisotropic  aerogel  as  an  ultralight  and  sensitive   [19]  Miao Jinlei, Liu Haihui, Li Yongbing, et al. Biodegradable transparent
                 physiological  activity  monitor[J].  Royal  Society  of  Chemistry,   substrate  based  on  edible  starch-chitosan  embedded  with  nature-
                 September 2018, 6: 2312-2315.                     inspired  three-dimensionally  interconnected  conductive  nanocomposites
            [9]   Ding Xiao (丁晓), Huang Ying (黄英). Preparation and properties of   for wearable green electronics[J]. American Chemical Society, 2018,
                 flexible silver nanowire conductive film[J]. Adhesion (粘接), 2014,   10(27): 23037-23047.
                 35(9): 44-49.                                 [20]  You T, Xu S L, Sun S X, et al. Controllable synthesis of pentagonal
            [10]  Qian Xiaoli (钱小立), Zhang Huan (张欢), Wang Wentao (王文韬),   silver  nanowires via  a  simple  alcohol-thermal  method[J].  Materials
                 et al. Controllable preparation and optical and electrical properties of   Letters, 2009, 63: 920-922.
                 silver  nanowire  flexible  transparent  conductive  films[J].  Functional   [21]  Hu Liangbing, Kim Hansun, Lee Jungyong, et al. Scalable coating
                 Materials (功能材料), 2017, 48(2): 2107-2111, 2116.     and properties of transparent, flexible, silver nanowire electrodes[J].
            [11]  Lin Fenggou, Mircea Chipara, Jeffrey M Zaleski. Convenient, rapid   ACS Nano, 2010, 4(5): 2955-2963.
                 synthesis of Ag nanowires[J]. Chem Mater, 2007, 19(7): 1755-1760.     [22]  Wang Peng (王鹏). Study on pyrolysis and hydrogen bond structure
            [12]  Li  Tianqi  (李天琪),  Hu  Fei  (胡飞).  Characterization  and  trapping   evolution  of  regenerated  cellulose  based  on[Bmim]Cl[D].  Wuhan:
                 efficiency  of  starch-based  heavy  metal  trapping  agents[J].  Fine   Huazhong  University  of  Science  and  Technology  (华中科技大学),
                 Chemicals (精细化工), 2018, 35(3): 463-468, 524.      2015.
            [13]  Lan Qiuming, Li Jiabao, He Xin, et al. Investigation on photoelectric   [23]  Lu Geng (鲁庚), Ma Mingbo (马明波), Hu Zhihua (胡志华), et al.
                 properties  and  stability  of  graphene/silver  nanowire  transparent   Study on dissolution and regeneration of natural brown cotton fiber
                 conductive  composite  film[J].  Chinese  Ceramic  Society,  2015,   in[BM1M]C1  ionic  liquid[J].  Journal  of  Zhejiang  University  of
                 44(12): 3788-3792, 3798.                          Technology (浙江理工大学学报), 2015, 33 (6): 752-756.

            (上接第 2100 页)                                       [14]  Tae S L, Hyun S R, Seong H H. Electrochemical corrosion properties
                                                                   of CeO 2-containing coatings on AZ31 magnesium alloys prepared by
            [5]   Pardo A, Merino M C, Coy A E, et al. Influence of microstructure   plasma  electrolytic  oxidation[J].  Corrosion  Science,  2012,  62(9):
                 and  composition  on  the  corrosion  behavior  of  Mg/Al  alloys  in   104-111.
                 chloride media[J]. Electrochimica Acta, 2008, 53(27): 7890-7902.     [15]  Somi D, Lukas B, Simon F. Corrosion behavior of AZ31 magnesium
            [6]   Li J R,  Zhang  B  B, Wei  Q Y,  et al.  Electrochemical  behavior  of   alloy  in  highly  alkaline  environment[J].  Acta  Metallurgica  Sinica
                 Mg-Al-Zn-In alloy as anode materials in 3. 5 wt. % NaCl solution[J].   (English Letters), 2017, 30(4): 367-375.
                 Electrochimica Acta, 2017, 238(16): 156-167.     [16]  Zhang S Y, Li Q, Yang X K, et al. Corrosion resistance of AZ91D
            [7]   Esmaily  M,  Svensson  J  E,  Fajardo  S,  et al.  Fundamentals  and   magnesium  alloy  with  electroless  plating pretreatment  and  Ni-TiO 2
                 advances  in  magnesium  alloy  corrosion[J].  Progress  in  Materials   composite  coating[J].  Materials  Characterization,  2010,  61(3):
                 Science, 2017, 89(5): 92-193.                     269-279.
            [8]   Abbasi S, Aliofkhazraei M , Mojiri H, et al. Corrosion behavior of   [17]  Zhang Shiyan (张世艳), Zhang Lunwu (张伦武), Wei Xiaoqin (魏小
                 pure  Mg  and  AZ31  magnesium  alloy[J].  Protection  of  Metals  and   琴), et al. Corrosion resistance of Ni-Co alloy coating prepared on
                 Physical Chemistry of Surfaces, 2017, 53(3): 573-578.
            [9]   Liu Hongxia (刘红霞), Yang Gangwen (杨纲文), Zheng Xin (郑鑫),   AZ91D  magnesium  alloy  in  simulated  marine  environment[J].
                 et al. Effect of addition of La, Ce and Sm on corrosion behavior of   Surface Technology (表面技术), 2017, 46(9): 229-234.
                 AZ91D  alloy  in  NaCl  solution[J].  Corrosion  Science  and  Protetion   [18]  Hamdy  A  S,  Farahat  M.  Chrome-free  zirconia-based  protective
                 Technology (腐蚀科学与防护技术), 2016, 28(4): 346-350.     coatings  for  magnesium  alloys[J].  Surface  &  Coatings  Technology,
            [10]  Zhou Xie (周谢), Huang Lu (黄鹿), Li Qin (李琴). Effect of erbium   2010, 204 (16): 2834-2840.
                 on  corrosion  of  As-cast  AZ91D  magnesium  alloy[J].  Chinese  Rare   [19]  Song  Zhengwei  (宋政伟),  Ding  Lifeng  (丁莉峰).  Study  on  the
                 Earths (稀土), 2018, 39(1): 127-131.                process  of  self-assembly  polyurethane  coating  on  Mg  alloy[J].
            [11]  Hu J Y, Huang D B, Zhang G A, et al. Research on the inhibition   Shandong Chemical Industry (山东化工), 2018, 47(8): 19-20, 23.
                 mechanism of tetraphenylporphyrin on AZ91D magnesium alloy[J].   [20]  Song G L, Aterns A, Wu X L, et al. Corrosion behavior of AZ21,
                 Corrosion Science, 2012, 63(10): 367-378.         AZ501  and  AZ91  in  socium  chloride[J].  Corrosion  Science,  1998,
            [12]  Li Y, Ba Z X, Li Y L, et al. Influence of sodium alginate inhibitor   40(10): 1769-1791.
                 addition  on  the  corrosion  protection  performance  of  AZ91D   [21]  Lee S M, Kim Y J, Eom S W, et al. Improvement in self-discharge of
                 magnesium  alloy  in  NaCl  solution[J].  Anti-Corrosion  Methods  &   Zn anode by applying surface modification for Zn-air batteries with
                 Materials, 2017, 64(5): 486-491.                  high  energy  density[J].  Journal  of  Power  Sources,  2013,  227(7):
            [13]  Gao H,  Li Q,  Dai  Y,  et al.  High  efficiency  corrosion  inhibitor   177-184.
                 8-hydroxyquinoline  and  its  synergistic  effect  with  sodium   [22]  Singh I B, Singh M, Das S. A comparative corrosion behavior of Mg,
                 dodecylbenzenesulphonate   on   AZ91D   magnesium   alloy[J].   AZ31  and  AZ91  alloys  in  3.5%  NaCl  solution[J].  Journal  of
                 Corrosion Science, 2010, 52(5): 1603-1609.        Magnesium and Alloys, 2015, 3(2): 142-148.
   137   138   139   140   141   142   143   144   145   146   147