Page 169 - 精细化工2019年第12期
P. 169

第 12 期                      刘   剑,等: YBO 3 微米球的水热合成及光催化性能                               ·2497·


            XPS 结果分析可知,YBO 3 微米球纳米片表面存在                            Nano, 2008, 2(7): 1487-1491.
                                                               [6]   Becker  P.  Borate  materials  in  nonlinear  optics[J].  Advanced
            氧空位,能捕获光生电子进而促进光生载流子的分                                 Materials, 1998, 10(13): 979-992.
                                                               [7]   Yu N,  Wang  S, Ye  N,  et al.  A  deep-ultraviolet  nonlinear  optical
            离;更重要的是,纳米片的形成不仅增强了 YBO 3                              crystal:  Strontium  beryllium  borate  fluoride  with  planar  Be(O/F) 3
            微米球对光的吸收能力,更增加了材料的比表面积,                                groups[J]. Chemistry of Materials, 2016, 28: 4563-4571.
                                                               [8]   Bashir B, Zhang B, Lei B, et al. DFT based theoretical study about
            从而为光催化反应提供更多可利用的表面活性位点。                                the contributions of fluorine to nonlinear optical properties in borate
                                                                   fluoride[J]. Crystal Growth & Design, 2016, 16: 5067-5073.
            因此,YBO 3 (8.5)微米球表现出较好的光催化性能。                      [9]   Jia  Q,  Miseki  Y,  Saito  K,  et al.  InBO 3  photocatalyst  with  calcite
                                                                   structure  for  overall  water  splitting[J].  Bulletin  of  the  Chemical
                                                                   Society of Japan, 2010, 83(10): 1275-1281.
                                                               [10]  Yuan  J,  Wu  Q,  Zhang  P,  et al.  Synthesis  of  indium  borate  and  its
                                                                   application in photodegradation of 4-chlorophenol[J]. Environmental
                                                                   Science & Technology, 2012, 46(4): 2330-2336.
                                                               [11]  Huang  H,  He  Y,  Lin  Z,  et al.  Two  Novel  Bi-based  borate
                                                                   photocatalysts: Crystal structure, electronic structure, photoelectrochemical
                                                                   properties,  and  photocatalytic  activity  under  simulated  solar  light
                                                                   irradiation[J].  Journal  of  Physical  Chemistry  C,  2013,  117:  22986-
                                                                   22994.
                                                               [12]  Zhang R, Dai Y, Lou Z, et al. Layered photocatalyst Bi 2O 2[BO 2(OH)]
                                                                   nanosheets with internal polar field enhanced photocatalytic activity
                                                                   [J]. Cryst Eng Comm, 2014, 16: 4931-4934.
                                                               [13]  Fan X, Zang L, Zhang M, et al. A bulk boron-based photocatalyst for
                                                                   efficient dechlorination: K 3B 6O 10Br[J]. Chemistry of Materials, 2014,
                                                                   26: 3169-3174.
                                                               [14]  Liu J, Zhao W, Wang B, et al. Bi 2ZnOB 2O 6: A polar material capable
                                                                   of  photocatalytic  degradation  of  Rhodamine  B[J].  Journal  of
                      图 11    YBO 3 光催化剂催化机理                       Materials Science: Materials in Electronics, 2018, 29: 13803-13809.
                                                                                                            10
               Fig. 11    Schematic illustration of YBO 3  photocatalyst   [15]  Fan X,  Liu  J, Lai K,  et al.  K 3MB 5O 10 (M  =  Zn and  Cd)  with  d
                                                                   configuration: Efficient and reusable catalysts for dehalogenation of
                                                                   halophenols[J]. Applied Catalysis B: Environmental, 2017, 206: 599-
            3   结论                                                 607.
                                                               [16]  Reshak  A.  A  novel  photocatalytic  water  splitting  solar-to-hydrogen
                                                                   energy conversion: Non-centro-symmetric borate CsZn 2B 3O 7 photocatalyst
                 本文采用水热法制备了 3 种 YBO 3 粉体并对其                        [J]. Journal of Alloys and Compounds, 2018, 741: 1258-1268.
            XRD、SEM、XPS、光催化性能及电化学性能等进                          [17]  Vitzthum  D,  Schauperl  M,  Strabler  C,  et al.  New  high-pressure
                                                                   gallium borate Ga 2B 3O 7(OH) with photocatalytic activity[J]. Inorganic
            行了研究。结果表明,在 pH=8.5 的条件下成功合成                            Chemistry, 2015, 55(2): 676-681.
                                                               [18]  Matsumoto Y, Ueda K, Tomita K, et al. Luminescence properties of
                                                                     3+
            了由暴露(100)晶面的纳米片自组装成的 YBO 3(8.5)微                       Eu  doped YBO 3 for temperature sensing[J]. Journal of the Ceramic
                                                                   Society of Japan, 2009, 117(1371): 1191-1194.
            米球。相比于 YBO 3 (8.0)和 YBO 3 (9.0)粉体颗粒,               [19]  Zhao L, Cao Z, Wei X, et al. Luminescence properties of Eu  doped
                                                                                                        3+
            YBO 3 (8.5)微米球在紫外光区域具有更强的吸收,并                          YBO 3 for temperature sensing[J]. Journal of  Rare Earths, 2017,
                                                                   35(4): 356-360.
            且其吸收边发生了明显的红移,增大了对光的响应                             [20]  Nair R, Nigam S, Sudarsan V, et al. YBO 3 versus Y 3BO 6 host on Tb
                                                                                                            3+
                                                                   luminescence[J]. Journal of Luminescence, 2018, 195: 271-277.
            范围,有利于光生载流子的产生。通过 XPS 和电化                          [21]  He X, Yang H. A novel strategy to the synthesis of Na 3YSi 2O 7 from
                                                                   natural palygorskite[J]. Applied Clay Science, 2014, 101: 339-344.
            学性能测试分析,YBO 3 (8.5)  表面存在的氧空位,                     [22]  Yao  W,  Zheng  X,  Guo  Y,  et al.  Role  of  chlorohydrocarbon  in
            能捕获光生电子进而促进光生载流子的分离,降低                                 increasing selectivity of propylene oxide over Ag-Y 2O 3-K 2O/α-Al 2O 3
                                                                   catalyst  for  epoxidation  of  propylene  by  molecular  oxygen[J].
            了光生电子-空穴的复合率。此外,纳米片的形成不                                Journal of Molecular Catalysis A, 2011, 342/343: 30-34.
                                                               [23]  Ilieva  L,  Venezia  A,  Petrova  P,  et al.  Effect  of  Y  modified  ceria
            仅增加了材料的比表面积,更为光催化反应提供更                                 support  in  mono  and  bimetallic  Pd–Au  catalysts  for  complete
            多可利用的表面活性位点。因此,YBO 3 (8.5)微米球                          benzene oxidation[J]. Catalysts, 2018, 8(7): 283.
                                                               [24]  Wang  J,  Chen  W,  Wang  M.  Properties  analysis  of  Mn-doped  ZnO
            表现出较好的光催化性能,40 min 对罗丹明 B 的降                           piezoelectric  films[J].  Journal  of  Alloys  and  Compounds,  2008,
                                                                   449(1/2): 44-47.
            解率达到 90.9%。YBO 3 光催化剂的制备及研究不仅                      [25]  Yang  G,  Wang  L,  Zhao  Y,  et al.  One-dimensional  Mg xTi yO x+2y
            拓宽了其应用范围,更为硼酸盐光催化材料的探索                                 nanostructures:  General  synthesis  and  enhanced  photocatalytic
                                                                   performance[J].  Applied  Catalysis  B:  Environmental,  2018,  225:
            研究提供了实验基础和技术支持。                                        332-339.
                                                               [26]  Zhu G, Que W, Zhang J, et al. Photocatalytic activity of SnWO 4 and
                                                                   SnW 3O 9 nanostructures prepared by a surfactant-assisted hydrothermal
            参考文献:                                                  process[J].  Materials  Science  and  Engineering:  B,  2011,  176(18):
            [1]   Fujishima  A,  Honda  K.  Electrochemical  photolysis  of  water  at  a   1448-1455.
                 semiconductor electrode[J]. Nature, 1972, 238: 37-38.     [27]  Shang M, Wang W, Zhang L. Preparation of BiOBr lamellar structure
            [2]   Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic   with high photocatalytic activity by CTAB as Br source and template
                 hydrogen generation[J]. Chemical Reviews, 2010, 110: 6503-6570.    [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 803-809.
            [3]   Zhang Zhuanfang (张转芳), Tang Lin (唐林), Sun Li (孙立), et al.   [28]  Zhang L, Wang W, Zhou L, et al. Bi 2WO 6 nano-and microstructures:
                 Hydro-thermal synthesis CuS/GO nanocomposite for photocatalytic   Shape  control  and  associated  visible-light-driven  photocatalytic
                 degradation/catalytic  reduction  of  organic  pollutants[J].  Fine   activities[J]. Small, 2007, 3(9): 1618-1625.
                 Chemicals (精细化工), 2019, 36(2): 237-242.       [29]  Liu Chong (刘翀), Liu Lilai (刘丽来), Nie Jiahui (聂佳慧). Synthesis
            [4]   Huang  Y,  Gao  Y,  Zhang  Q,  et al.  Biocompatible  FeOOH-carbon   of  carbon  ball  modified  g-C 3N 4  for  improved  photocatalytic
                 quantum dots nanocomposites for gaseous NO x removal under visible   activity[J]. Chemical Journal of Chinese Universities (高等学校化学
                 light: Improved charge separation and high selectivity[J]. Journal of   学报), 2018, 39(7): 1511-1517.
                 Hazardous Materials, 2018, 354: 54-62.        [30]  Tan  C,  Zhu  G,  Hojamberdiev  M,  et al.  Adsorption  and  enhanced
            [5]   Graeme W, Brian  S, Prashant V K. TiO 2-graphene nanocomposites   photocatalytic  activity  of  the  {0001}  faceted  Sm-doped  ZnIn 2S 4
                 UV-assisted  photocatalytic  reduction  of  graphene  oxide[J].  ACS   microspheres[J]. Journal of Hazardous Materials, 2014, 278: 572-583.
   164   165   166   167   168   169   170   171   172   173   174