Page 90 - 201902
P. 90
·256· 精细化工 FINE CHEMICALS 第 36 卷
由图 11 可知,改性后的丝网直径为 210 m, perovskites[J]. Applied Catalysis B: Environmental, 1998, 15(3/4):
179-187.
丝网涂覆了 0.363 g MA 后的厚度为 250 m,对应 [11] Isupova L A, Tsybulya S V, Kryukova G N, et al. Real structure and
涂层厚度为 20 m。而涂覆了 0.367 g MA 和 0.637 g catalytic activity of La 1−xCa xMnO 3+δ perovskites[J]. Solid State
Ionics, 2001, 141(6): 417-425.
LSM4 丝网厚度为 303 m。涂覆 LSM4 后的丝网直 [12] Song Chonglin (宋崇林), Shen Meiqing (沈美庆), Wang Jun (王军),
径变化不大,是因为 MA 涂层较为疏松,有部分 et al. Study on catalytic properties and reaction mechanism of DeNO x
catalysts LaBO 3(1)[J]. Journal of Combustion Science and
LSM4 涂覆后渗透到其内部。考虑到合金丝网基体 Technology (燃烧科学与技术), 1999, (1): 91-95.
2
的表面积为 240 cm 左右,对应单位面积 LSM4 的 [13] Kirchnerova J, Klvana D. Synthesis and characterization of
perovskite catalysts[J]. Solid State Ionics, 1999, 123(1/2/3/4):
2
质量为 2.65 mg/cm 。 307-317.
[14] Song K S, Hao X C, Sang D K, et al. Catalytic combustion of CH 4,
3 结论 and CO on La 1− xM xMnO 3, perovskites[J]. Catalysis Today, 1999,
47(1/4): 155-160.
[15] Xu Luhua (徐鲁华), Weng Duan (翁端), Wu Xiaodong (吴晓东), et
本文采用沉积-沉淀法制备了一系列 La 0.8 Sr 0.2 MnO 3 / al. Preparation of perovskite materials La 1-xSr xMn 0.7Zn 0.3O 3+λ and
catalytic performance for NO x under lean-combustion[J]. Journal of
nMgAl 2 O 4 (LSMn)复合型粉体催化剂,在低浓度甲烷 the Chinese Rare Earth Society (中国稀土学报), 2002, 20(4): 378-381.
催化燃烧反应中考察了制备条件的影响。得到 n 为 [16] Han Qianqian (韩倩茜), Shi Bingbing (史兵兵), Jiang Zhidong (江
志东). La 0.8Sr 0.2Mn 0.5Ni 0.5O 3 composited with Yttrium stabilized
4、在 10 ℃左右的低温老化、最后在 800 ℃下焙烧 Zirconia for catalytic lean burn of methane[J]. Chemical Reaction
时制得的催化剂效果最好。活性成分 LSM 与载体 Engineering and Technology (化学反应工程与工艺), 2011, 27(6):
488-495.
MA 间存在的相互作用显著提高了 LSM 的活性和抗 [17] Li H, Fu R, Duan W, et al. The preparation effect on activity and
thermal stability of La 0.8Ca 0.2FeO 3 perovskite honeycombs dispersed
烧结性能。其次,优化了在合金丝网制成的基体上
by MgAl 2O 4 spinel washcoat for catalytic combustion of dilute
涂覆 LSM4 活性粉体的蜂窝催化剂制备方法,优化 methane[J]. Journal of Environmental Chemical Engineering, 2016,
4(2): 2187-2195.
了第二载体涂覆量(20 m)和活性粉体涂覆量(约 [18] Geus J W, Giezen J C. Monoliths in catalytic oxidation[J]. Catalysis
2
2.65 mg/cm 丝网基体),此时的蜂窝催化剂 k 值与 Today, 1999, 47(1/4): 169-180.
[19] Williams J L. Monolith structures materials, properties and uses[J].
粉体测得的 k 值基本一致。用 MA 稳定的 LSM 钙钛 Catalysis Today, 2001, 69(1): 3-9.
矿丝网蜂窝催化剂有较好的活性和热稳定性,可高效 [20] Jin L Y, He M, Lu J Q,et al. Preparation and catalytic performance of
Pd monolithic catalysts supported by Y 2O 3 washcoat[J]. Chinese
应用于高温和高空速场合,具备较好的工业化前景。 Journal Catalysis, 2007, 28(7): 635-640.
[21] Jiang Z, Chung K S, Kim G R, et al. Mass transfer characteristics of
参考文献: wire-mesh honeycomb reactors[J]. Chemical Engineering Science,
2003, 58(7): 1103-1111.
[1] Ma Lei (马磊). The general situation of ventilation air methane [22] Yang K S, Jiang Z, Chung J S. Electrophoretically Al-coated wire
utilization technologies in coal mine[J]. Shandong Chemical Industry mesh and its application for catalytic oxidation of 1,2-dichlorobenzene[J].
(山东化工), 2014, 43(1): 42-45. Surface and Coatings Technology, 2003, 168(2): 103-110.
[2] Jiang Yang (姜洋). Development and application of ventilation air [23] Montebelli A, Visconti C G, Groppi G, et al. Methods for the catalytic
methane utilization technologies in coal mine[J]. Heilongjiang activation of metallic structured substrates[J]. Catalysis Science &
Science (黑龙江科学), 2017, 18(8): 5. Technology, 2014, 4(9): 2846-2870.
[3] Guo Dong (郭东). Present utilization situation and benefit analysis of [24] Sun Hong (孙红), Quan Xie (全燮), Zhang Yaobin (张耀斌), et al.
low concentration CMM[J]. China Coalbed Methane (中国煤层气), Selective catalytic reduction of NO x over Pd/CeZr/TiO 2/Al 2O 3 wire-
2008, 5(3): 42-46. mesh honeycomb catalysts[J]. Environmental Science (环境科学),
[4] Yang Qijun (杨启军), Hao Xiaoli (郝小礼), Feng Tao (冯涛), et al. 2008, 29(6): 1743-1748.
Energy saving and GHG emission reduction potentials of VAM from [25] Lin Zhijiao (林志娇), Wang Ke (王珂), Wang Yunxing (王云兴), et
coal mine[J]. Mineral Engineering Research (矿业工程研究), 2014, al. Preparation of aluminum particulate coating on iron-chromium-
29(2): 75-80. aluminum alloy wire mesh by electrophoretic deposition[J].
[5] Dalla Betta R A, Schlatter J C, Yee D K, et al. Catalytic combustion Electroplating & Finishing (电镀与涂饰), 2009, 28(4): 53-56.
technology to achieve ultra low NO x, emissions: Catalyst design and [26] Thaicharoensutcharittham S, Meeyoo V, Kitiyanan B, et al. Catalytic
performance characteristics[J]. Catalysis Today, 1995, 26(3): 329-335. combustion of methane over NiO/Ce 0.75Zr 0.25O 2 catalyst[J]. Catalysis
[6] Cimino S, Lisi L, Pirone R, et al. Methane combustion on Communications, 2009, 10(5): 673-677.
perovskites-based structured catalysts[J]. Catalysis Today, 2000, [27] Gao F, Lewis R A, Wang X L, et al. Far-infrared reflection and
59(1): 19-31. transmission of La 1-xCa xMnO 3[J]. Journal of Alloys and Compounds,
[7] Yin F, Ji S, Chen B, et al. Preparation and characterization of 2002, 347(1/2): 314-318.
LaFe 1xMg xO 3/Al 2O 3/FeCrAl: Catalytic properties in methane [28] Ravi S, Karthikeyan A. Effect of calcination temperature on
combustion[J]. Applied Catalysis B: Environmental, 2006, 66(3): La 0.7Sr 0.3MnO 3 nanoparticles synthesized with modified sol-gel
265-273. route[J]. Physics Procedia, 2014, 54: 45-54.
[8] Lu Hanfeng (卢晗锋), Huang Haifeng (黄海凤), Liu Huayan (刘华 [29] Ponce S, Pena M A, Fierro J L G, et al. Surface properties and
彦), et al. The preparation of monolithic La 0.8Sr 0.2MnO 3 Catalysts catalytic performance in methane combustion of Sr-substituted
and its performance for VOCs catalytic combustion[J]. Journal of lanthanum manganites[J]. Applied Catalysis B: Environmental, 2000,
Chemical Engineering of Chinese Universities (高校化学工程学报), 24(3/4): 193-205.
2009, 23(6): 973-978. [30] Vogel E M, Jr D W J, Gallagher P K, et al. Oxygen stoichiometry in
[9] Wang Ke (王珂), Lin Zhijiao (林志娇), Jiang Zhidong (江志东). LaMn 1-xCu xO 3+y by thermogravimetry[J]. Journal of the American
Progress in monolithic catalysts for catalytic combustion of Ceramic Society, 1977, 60(1/2): 31-33.
methane[J]. Natural Gas Chemical Industry (天然气化工), 2009, [31] Fierro J L G, Tascon J, Tejuca L G, et al. Physicochemical properties
34(1): 71-78. of LaMnO 3: Reducibility and kinetics of O 2, adsorption[J]. Journal of
[10] Marchetti L, Forni L. Catalytic combustion of methane over Catalysis, 1984, 89(2): 209-216.