Page 90 - 201902
P. 90

·256·                             精细化工   FINE CHEMICALS                                  第 36 卷

                 由图 11 可知,改性后的丝网直径为 210  m,                       perovskites[J].  Applied  Catalysis  B:  Environmental,  1998,  15(3/4):
                                                                   179-187.
            丝网涂覆了 0.363  g  MA 后的厚度为 250  m,对应                [11]  Isupova L A, Tsybulya S V, Kryukova G N, et al. Real structure and
            涂层厚度为 20  m。而涂覆了 0.367  g  MA 和 0.637  g              catalytic  activity  of  La 1−xCa xMnO 3+δ  perovskites[J].  Solid  State
                                                                   Ionics, 2001, 141(6): 417-425.
            LSM4 丝网厚度为 303  m。涂覆 LSM4 后的丝网直                   [12]  Song Chonglin (宋崇林), Shen Meiqing (沈美庆), Wang Jun (王军),
            径变化不大,是因为 MA 涂层较为疏松,有部分                                et al. Study on catalytic properties and reaction mechanism of DeNO x
                                                                   catalysts  LaBO 3(1)[J].  Journal  of  Combustion  Science  and
            LSM4 涂覆后渗透到其内部。考虑到合金丝网基体                               Technology (燃烧科学与技术), 1999, (1): 91-95.
                              2
            的表面积为 240  cm 左右,对应单位面积 LSM4 的                     [13]  Kirchnerova  J,  Klvana  D.  Synthesis  and  characterization  of
                                                                   perovskite  catalysts[J].  Solid  State  Ionics,  1999,  123(1/2/3/4):
                             2
            质量为 2.65 mg/cm 。                                       307-317.
                                                               [14]  Song K S, Hao X C, Sang D K, et al. Catalytic combustion of CH 4,
            3    结论                                                and  CO  on  La 1−  xM xMnO 3,  perovskites[J].  Catalysis  Today,  1999,
                                                                   47(1/4): 155-160.
                                                               [15]  Xu Luhua (徐鲁华), Weng Duan (翁端), Wu Xiaodong (吴晓东), et
                 本文采用沉积-沉淀法制备了一系列 La 0.8 Sr 0.2 MnO 3 /            al.  Preparation  of  perovskite  materials  La 1-xSr xMn 0.7Zn 0.3O 3+λ  and
                                                                   catalytic performance for NO x under lean-combustion[J]. Journal of
            nMgAl 2 O 4 (LSMn)复合型粉体催化剂,在低浓度甲烷                      the Chinese Rare Earth Society (中国稀土学报), 2002, 20(4): 378-381.
            催化燃烧反应中考察了制备条件的影响。得到 n 为                           [16]  Han Qianqian (韩倩茜), Shi Bingbing (史兵兵), Jiang Zhidong (江
                                                                   志东).  La 0.8Sr 0.2Mn 0.5Ni 0.5O 3  composited  with  Yttrium  stabilized
            4、在 10 ℃左右的低温老化、最后在 800 ℃下焙烧                           Zirconia  for  catalytic  lean  burn  of  methane[J].  Chemical  Reaction
            时制得的催化剂效果最好。活性成分 LSM 与载体                               Engineering  and  Technology  (化学反应工程与工艺),  2011,  27(6):
                                                                   488-495.
            MA 间存在的相互作用显著提高了 LSM 的活性和抗                         [17]  Li  H,  Fu  R,  Duan  W, et al.  The  preparation  effect  on  activity  and
                                                                   thermal stability of La 0.8Ca 0.2FeO 3 perovskite honeycombs dispersed
            烧结性能。其次,优化了在合金丝网制成的基体上
                                                                   by  MgAl 2O 4  spinel  washcoat  for  catalytic  combustion  of  dilute
            涂覆 LSM4 活性粉体的蜂窝催化剂制备方法,优化                              methane[J]. Journal of Environmental Chemical Engineering, 2016,
                                                                   4(2): 2187-2195.
            了第二载体涂覆量(20 m)和活性粉体涂覆量(约                          [18]  Geus J W, Giezen J C. Monoliths in catalytic oxidation[J]. Catalysis
                       2
            2.65  mg/cm 丝网基体),此时的蜂窝催化剂 k 值与                        Today, 1999, 47(1/4): 169-180.
                                                               [19]  Williams J L. Monolith structures materials, properties and uses[J].
            粉体测得的 k 值基本一致。用 MA 稳定的 LSM 钙钛                          Catalysis Today, 2001, 69(1): 3-9.
            矿丝网蜂窝催化剂有较好的活性和热稳定性,可高效                            [20]  Jin L Y, He M, Lu J Q,et al. Preparation and catalytic performance of
                                                                   Pd  monolithic  catalysts  supported  by  Y 2O 3  washcoat[J].  Chinese
            应用于高温和高空速场合,具备较好的工业化前景。                                Journal Catalysis, 2007, 28(7): 635-640.
                                                               [21]  Jiang Z, Chung K S, Kim G R, et al. Mass transfer characteristics of
            参考文献:                                                  wire-mesh  honeycomb  reactors[J].  Chemical  Engineering  Science,
                                                                   2003, 58(7): 1103-1111.
            [1]   Ma Lei (马磊).  The  general  situation  of  ventilation  air  methane   [22]  Yang  K  S,  Jiang  Z,  Chung  J  S.  Electrophoretically  Al-coated  wire
                 utilization technologies in coal mine[J]. Shandong Chemical Industry   mesh and its application for catalytic oxidation of 1,2-dichlorobenzene[J].
                 (山东化工), 2014, 43(1): 42-45.                       Surface and Coatings Technology, 2003, 168(2): 103-110.
            [2]   Jiang  Yang  (姜洋).  Development  and  application  of  ventilation  air   [23]  Montebelli A, Visconti C G, Groppi G, et al. Methods for the catalytic
                 methane  utilization  technologies  in  coal  mine[J].  Heilongjiang   activation  of  metallic  structured  substrates[J].  Catalysis  Science  &
                 Science (黑龙江科学), 2017, 18(8): 5.                  Technology, 2014, 4(9): 2846-2870.
            [3]   Guo Dong (郭东). Present utilization situation and benefit analysis of   [24]  Sun Hong (孙红), Quan Xie (全燮), Zhang Yaobin (张耀斌), et al.
                 low concentration CMM[J]. China Coalbed Methane (中国煤层气),   Selective catalytic reduction of NO x over Pd/CeZr/TiO 2/Al 2O 3 wire-
                 2008, 5(3): 42-46.                                mesh  honeycomb  catalysts[J].  Environmental  Science  (环境科学),
            [4]   Yang Qijun (杨启军), Hao Xiaoli (郝小礼), Feng Tao (冯涛), et al.   2008, 29(6): 1743-1748.
                 Energy saving and GHG emission reduction potentials of VAM from   [25]  Lin Zhijiao (林志娇), Wang Ke (王珂), Wang Yunxing (王云兴), et
                 coal mine[J]. Mineral Engineering Research (矿业工程研究), 2014,   al.  Preparation  of  aluminum  particulate  coating  on  iron-chromium-
                 29(2): 75-80.                                     aluminum  alloy  wire  mesh  by  electrophoretic  deposition[J].
            [5]   Dalla Betta R A, Schlatter J C, Yee D K, et al. Catalytic combustion   Electroplating & Finishing (电镀与涂饰), 2009, 28(4): 53-56.
                 technology to achieve ultra low NO x, emissions: Catalyst design and   [26]  Thaicharoensutcharittham S, Meeyoo V, Kitiyanan B, et al. Catalytic
                 performance characteristics[J]. Catalysis Today, 1995, 26(3): 329-335.   combustion of methane over NiO/Ce 0.75Zr 0.25O 2 catalyst[J]. Catalysis
            [6]   Cimino  S,  Lisi  L,  Pirone  R,  et al.  Methane  combustion  on   Communications, 2009, 10(5): 673-677.
                 perovskites-based  structured  catalysts[J].  Catalysis  Today,  2000,   [27]  Gao  F,  Lewis  R  A,  Wang  X  L,  et al.  Far-infrared  reflection  and
                 59(1): 19-31.                                     transmission of La 1-xCa xMnO 3[J]. Journal of Alloys and Compounds,
            [7]   Yin  F,  Ji  S,  Chen  B,  et al.  Preparation  and  characterization  of   2002, 347(1/2): 314-318.
                 LaFe 1xMg xO 3/Al 2O 3/FeCrAl:  Catalytic  properties  in  methane   [28]  Ravi  S,  Karthikeyan  A.  Effect  of  calcination  temperature  on
                 combustion[J].  Applied  Catalysis  B:  Environmental,  2006,  66(3):   La 0.7Sr 0.3MnO 3  nanoparticles  synthesized  with  modified  sol-gel
                 265-273.                                          route[J]. Physics Procedia, 2014, 54: 45-54.
            [8]   Lu Hanfeng (卢晗锋), Huang Haifeng (黄海凤), Liu Huayan (刘华  [29]  Ponce  S, Pena  M  A, Fierro J L G,  et al.  Surface  properties  and
                 彦),  et al.  The  preparation  of  monolithic  La 0.8Sr 0.2MnO 3  Catalysts   catalytic  performance  in  methane  combustion  of  Sr-substituted
                 and  its  performance  for  VOCs  catalytic  combustion[J].  Journal  of   lanthanum manganites[J]. Applied Catalysis B: Environmental, 2000,
                 Chemical Engineering of Chinese Universities (高校化学工程学报),   24(3/4): 193-205.
                 2009, 23(6): 973-978.                         [30]  Vogel E M, Jr D W J, Gallagher P K, et al. Oxygen stoichiometry in
            [9]   Wang  Ke  (王珂),  Lin  Zhijiao  (林志娇),  Jiang  Zhidong  (江志东).   LaMn 1-xCu xO 3+y  by  thermogravimetry[J].  Journal  of  the  American
                 Progress  in  monolithic  catalysts  for  catalytic  combustion  of   Ceramic Society, 1977, 60(1/2): 31-33.
                 methane[J].  Natural  Gas  Chemical  Industry  (天然气化工),  2009,   [31]  Fierro J L G, Tascon J, Tejuca L G, et al. Physicochemical properties
                 34(1): 71-78.                                     of LaMnO 3: Reducibility and kinetics of O 2, adsorption[J]. Journal of
            [10]  Marchetti  L,  Forni  L.  Catalytic  combustion  of  methane  over   Catalysis, 1984, 89(2): 209-216.
   85   86   87   88   89   90   91   92   93   94   95