Page 48 - 201904
P. 48

·574·                             精细化工   FINE CHEMICALS                                  第 36 卷

            参考文献:                                                  mutagenesis[J].  Liquor-Making Science  &  Technology  (酿造科技),
                                                                   2011, 203(5): 23-26.
            [1]   Walker G M, Ingledew W M, Abbas C, et al. The alcohol textbook[M].   [24]  Geng Xiaolin (耿笑林), Wang Qinhong (王钦宏), Song Andong (宋
                 6th ed. Duluth: Lallemand Biofuels & Distilled Spirits, 2017: 42-43.   安东).  Adaptive  evolution  for  screening  thermo-tolerant,  xylitol-
            [2]   Yue Guojun (岳国君), Wu Guoqing (武国庆), Hao Xiaoming (郝小  producing Candida maltosa[J]. China Brewing (中国酿造), 2013, 1:
                 明),  et al.  The  status  quo  and  prospects  of  fuel  ethanol  process   36-39.
                 technology  in  china  [J].  Progress  in  Chemistry  (化学进展),  2007,   [25]  Caspeta  L,  Nielsen  J.  Thermotolerant  yeast  strains  adapted by
                 19(7/8): 1084-1090.                               laboratory  evolution  show  trade-off  at  ancestral  temperatures  and
            [3]   Zhang G, Lin Y, Qi X, et al. TALENs-assisted multiplex editing for   preadaptation to other stresses[J]. mBio, 2015, 6(4): e00431.
                 accelerated genome evolution to improve yeast phenotypes[J]. ACS   [26]  Satomura A, Miura N, Kuroda K, et al. Reconstruction of thermotolerant
                 Synthetic Biology, 2015, 4(10): 1101-1111.        yeast by one-point mutation identified through whole-genome analyses
            [4]   Liu  Y,  Zhang  G,  Sun  H,  et al.  Enhanced  pathway  efficiency  of   of adaptively-evolved strains[J]. Scientific Reports, 2016, 6: 23157.
                 Saccharomyces cerevisiae by introducing thermo-tolerant devices[J].   [27]  Zheng  P,  Liu  M,  Liu  XD,  et al.  Genome  shuffling  improves
                 Bioresource Technology, 2014, 170(5): 38-44.      thermotolerance  and  glutamic  acid  production  of  Corynebacteria
            [5]   Abbott D A, Ingledew W M. Buffering capacity of whole corn mash   glutamicum[J].  World  Journal  of  Microbiology  &  Biotechnology,
                 alters  concentrations  of  organic  acids  required  to  inhibit  growth  of   2012, 28(3): 1035-1043.
                 Saccharomyces cerevisiae and ethanol production[J]. Biotechnology   [28]  Wang  Hao  (王灏),  Wang  Hang  (王航), Meng  Chun (孟春),  et al.
                 Letters, 2004, 26(16): 1313-1316.                 Study  of  breeding  Saccharomyces cerevisiae with improved
            [6]   Zi  Z,  Liebermeister  W,  Klipp  E.  A  quantitative  study  of  the  Hog1   temperature  and  ethanol  tolerance  by  genome  shuffling[J].
                 MAPK  response  to  fluctuating  osmotic  stress  in  Saccharomyces   Microbiology China (微生物学通报), 2007, 34 (4): 705-708.
                 cerevisiae[J]. PloS One, 2010, 5(3): e9522.     [29]  Lu Y, ChengY F, He X P, et al. Improvement of robustness and ethanol
            [7]   Gong Y, Kakihara Y, Krogan N, et al. An atlas of chaperone-protein   production of  ethanologenic Saccharomyces cerevisiaeunder  co-stress
                 interactions  in  Saccharomyces cerevisiae:  implications  to  protein   of heat and inhibitors[J]. J Ind Microbiol Biotechnol, 2012, 39: 73-80.
                 folding  pathways  in  the  cell[J].  Molecular  Systems  Biology,  2014,   [30]  Chen  Y,  Sheng  J,  Jiang  T,  et al.  Transcriptional  profiling  reveals
                 5(1): 275-283.                                    molecular basis and novel genetic targets for improved resistance to
            [8]   Li J R, Yu P. Expression of Cu, Zn-superoxide dismutase gene from   multiple  fermentation  inhibitors  in  Saccharomyces cerevisiae[J].
                 Saccharomyces cerevisiae  in  Pichia  pastoris  and  its  resistance  to   Biotechnology for Biofuels, 2016, 9: 9.
                 oxidative stress[J]. Applied Biochemistry and Biotechnology, 2007,   [31]  Yang  W,  Zhang  J,  Wang  H,  et al.  Angiotensin  Ⅱ  downregulates
                 136(1): 127-139.                                  catalase  expression  and  activity  in  vascular  adventitial  fibroblasts
            [9]   Choi K, Batke S, Szakal B, et al. Concerted and differential actions   through an AT1R/ERK1/2-dependent pathway[J]. Mol Cell Biochem,
                 of two enzymatic domains underlie Rad5 contributions to DNA damage   2011, 358(1/2):21-29.
                 tolerance[J]. Nucleic Acids Research, 2015, 43(5): 2666-2677.     [32]  Zhao Xinqing (赵心清), Jiang Rujiao (姜如娇), Li Ning (李宁), et
            [10]  Petitjean  M,  Teste  M  A,  Francois  J  M,  et al.  Yeast  tolerance  to   al.  Improving  ethanol  tolerance  of  Saccharomyces cerevisiae
                 various  stresses  relies  on  the  trehalose-6P  synthase  (Tps1)  protein,   industrial strain by directed evolution of SPT3 [J]. Chin J Biotech (生
                 not on trehalose[J]. Journal of Biological Chemistry, 2015, 290(26):   物工程学报), 2010, 26(2): 159-164.
                 16177-16190.                                  [33]  Hiroyuki H, Mai M, Hiroshi T. Enhancement of stress tolerance in
            [11]  Busti S, Mapelli V, Tripodi F, et al. Respiratory metabolism and calorie   Saccharomyces cerevisiaeby overexpression of ubiquitin ligase Rsp5
                 restriction relieve persistent endoplasmic reticulum stress induced by   and  ubiquitin-conjugating  enzymes[J].  Biosci  Biotechnol  Biochem,
                 calcium shortage in yeast[J]. Scientific Reports, 2016, 6: 27942.     2006, 70: 2762-2765.
            [12]  Teixeira M C, Monteiro P, Jain P , et al. The yeastract database: a   [34]  Shahsavarani  H,  Sugiyamaa  M,  Kanekoa  Y,  et al.  Superior
                 tool  for  the  analysis  of  transcription  regulatory  associations  in   thermotolerance of Saccharomyces cerevisiae for efficient bioethanol
                 Saccharomyces cerevisiae[J].  Nucleic  Acids  Research,  2006,  34   fermentation  can  be  achieved  by  overexpression  of  RSP5ubiquitin
                 (Database issue): D446-D451.                      ligase[J]. Biotechnol Adv, 2012, 30: 1289-1300.
            [13]  Lam F H, Ghaderi A, Fink G R, et al. Biofuels. Engineering alcohol   [35]  Qiu  Z,  Deng  Z,  Tan  H,  et al.  Engineering  the  robustness  of
                 tolerance in yeast[J]. Science, 2014, 346(6205): 71-75.     Saccharomyces cerevisiae  by  introducing  bifunctional  glutathione
            [14]  Izawa  S,  Ikeda  K,  Miki  T,  et al.  Vacuolar  morphology  of   synthase gene[J]. J Ind Microbiol Biotechnol, 2015, 42: 537-542.
                 Saccharomyces cerevisiae  during  the  process  of  wine  making  and   [36]  Luhe  A  L,  Tan  L,  Wu  J,  et al.  Increase  of  ethanol  tolerance  of
                 Japanese sake brewing[J]. Applied Microbiology and Biotechnology,   Saccharomyces  cerevisiae   by   error-prone   whole   genome
                 2010, 88(1): 277-282.                             amplification[J]. Biotechnology Letters, 2011, 33(5): 1007-1011.
            [15]  Caspeta L, Chen Y, Ghiaci P, et al. Biofuels. Altered sterol composition   [37]  Kitichantaropas  Y,  Boonchird  C,  Sugiyama  M,  et al.  Cellular
                 renders yeast thermotolerant[J]. Science, 2014, 346(6205): 75-78.     mechanisms contributing to multiple stress tolerance in Saccharomyces
            [16]  Jia H Y, Sun X Y, Sun H, et al. Intelligent microbial heat-regulating   cerevisiae  strains  with  potential  use  in  high-temperature  ethanol
                 engine (IMHeRE) for improved thermo-robustness and efficiency of   fermentation[J]. AMB Express, 2016, 6(1): 107.
                 bioconversion[J]. ACS Synthetic Biology, 2016, 5(4): 312-320.     [38]  Thompson  O  A,  Hawkins  G  M,  Gorsich  S  W,  et al.  Phenotypic
            [17]  Zhang Y X, Perry  K,  Vinci  V A, et al. Genome shuffling leads to   characterization  and  comparative  transcriptomics  of  evolved
                 rapid  phenotypic  improvement  in  bacteria[J].  Nature,  2002,   Saccharomyces cerevisiae  strains  with  improved  tolerance  to
                 415(6872): 644-646.                               lignocellulosic  derived  inhibitors[J].  Biotechnology  for  Biofuels,
            [18]  Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription   2016, 9: 200.
                 machinery  for  improved  ethanol  tolerance  and  production[J].   [39]  Doudna J A, Charpentier E. Genome editing. The new frontier of genome
                 Science, 2006, 314(5805): 1565-1568.              engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096.
            [19]  Isaacs  F  J,  Carr  P  A,  Wang  H  H,  et al.  Precise  manipulation  of   [40]  Rauscher  B,  Heigwer  F,  Breinig  M,  et al.  Genome  CRISPR  a
                 chromosomes  in  vivo  enables  genome-wide  codon  replacement[J].   database  for  high-throughput  CRISPR/Cas9  screens[J].  Nucleic
                 Science, 2011, 333(6040): 348-353.                Acids Research, 2017, 45(Database issue): D679-D686.
            [20]  Auesukaree C, Koedrith P, Saenpayavai P, et al. Characterization and   [41]  Wang H, Yang H, Shivalila C S, et al. One-step generation of mice
                 gene  expression  profiles  of  thermotolerant  Saccharomyces   carrying  mutations  in  multiple  genes  by  CRISPR/Cas-mediated
                 cerevisiaeisolatesfrom Thai fruits[J]. J Biosci Bioeng, 2012, 114: 144-149.     genome engineering[J]. Cell, 2013, 153(4): 910-918.
            [21]  Sridhar M, Sree N K, Rao L V. Effect of UV radiation on thermotolerance,   [42]  Ryan O W, Skerker J M, Maurer M J, et al. Selection of chromosomal
                 ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1   DNA libraries using a multiplex CRISPR system[J]. ELife, 2014, 3: e03703.
                 and VS3 strains[J]. Bioresource Technology, 2002, 83(3): 199-202.     [43]  Zehua B, Mohammad H R, Pu X, et al. Genome-scale engineering of
            [22]  Cha Y L, Ana G H, Yang J, et al. Bioethanol production from Miscanthus   Saccharomyces cerevisiae with single-nucleotide precision[J]. Nature
                 using thermotolerant Saccharomyces cerevisiaembc 2 isolated from   Biotechnology, 2018. DOI: 10. 1038/nbt. 4132.
                 the respiration-deficient mutants[J]. Renew Energ, 2015, 80: 259-265.     [44]  Snoek  T,  Picca  Nicolino  M,  Van  den  Bremt  S,  et al.  Large-scale
            [23]  Shen Naikun(申乃坤), Wang Qingyan (王青艳), Qin Yan (秦艳), et   robot-assisted  genome  shuffling  yields  industrial  Saccharomyces
                 al.  Breeding  of  a  thermotolerant  and  high  ethanol-producing   cerevisiae yeasts with increased ethanol tolerance[J]. Biotechnology
                 Saccharomyces cerevisiae  strain  by  UV-NTG  composite  protoplast   for Biofuels, 2015, 8: 32.
   43   44   45   46   47   48   49   50   51   52   53