Page 48 - 201904
P. 48
·574· 精细化工 FINE CHEMICALS 第 36 卷
参考文献: mutagenesis[J]. Liquor-Making Science & Technology (酿造科技),
2011, 203(5): 23-26.
[1] Walker G M, Ingledew W M, Abbas C, et al. The alcohol textbook[M]. [24] Geng Xiaolin (耿笑林), Wang Qinhong (王钦宏), Song Andong (宋
6th ed. Duluth: Lallemand Biofuels & Distilled Spirits, 2017: 42-43. 安东). Adaptive evolution for screening thermo-tolerant, xylitol-
[2] Yue Guojun (岳国君), Wu Guoqing (武国庆), Hao Xiaoming (郝小 producing Candida maltosa[J]. China Brewing (中国酿造), 2013, 1:
明), et al. The status quo and prospects of fuel ethanol process 36-39.
technology in china [J]. Progress in Chemistry (化学进展), 2007, [25] Caspeta L, Nielsen J. Thermotolerant yeast strains adapted by
19(7/8): 1084-1090. laboratory evolution show trade-off at ancestral temperatures and
[3] Zhang G, Lin Y, Qi X, et al. TALENs-assisted multiplex editing for preadaptation to other stresses[J]. mBio, 2015, 6(4): e00431.
accelerated genome evolution to improve yeast phenotypes[J]. ACS [26] Satomura A, Miura N, Kuroda K, et al. Reconstruction of thermotolerant
Synthetic Biology, 2015, 4(10): 1101-1111. yeast by one-point mutation identified through whole-genome analyses
[4] Liu Y, Zhang G, Sun H, et al. Enhanced pathway efficiency of of adaptively-evolved strains[J]. Scientific Reports, 2016, 6: 23157.
Saccharomyces cerevisiae by introducing thermo-tolerant devices[J]. [27] Zheng P, Liu M, Liu XD, et al. Genome shuffling improves
Bioresource Technology, 2014, 170(5): 38-44. thermotolerance and glutamic acid production of Corynebacteria
[5] Abbott D A, Ingledew W M. Buffering capacity of whole corn mash glutamicum[J]. World Journal of Microbiology & Biotechnology,
alters concentrations of organic acids required to inhibit growth of 2012, 28(3): 1035-1043.
Saccharomyces cerevisiae and ethanol production[J]. Biotechnology [28] Wang Hao (王灏), Wang Hang (王航), Meng Chun (孟春), et al.
Letters, 2004, 26(16): 1313-1316. Study of breeding Saccharomyces cerevisiae with improved
[6] Zi Z, Liebermeister W, Klipp E. A quantitative study of the Hog1 temperature and ethanol tolerance by genome shuffling[J].
MAPK response to fluctuating osmotic stress in Saccharomyces Microbiology China (微生物学通报), 2007, 34 (4): 705-708.
cerevisiae[J]. PloS One, 2010, 5(3): e9522. [29] Lu Y, ChengY F, He X P, et al. Improvement of robustness and ethanol
[7] Gong Y, Kakihara Y, Krogan N, et al. An atlas of chaperone-protein production of ethanologenic Saccharomyces cerevisiaeunder co-stress
interactions in Saccharomyces cerevisiae: implications to protein of heat and inhibitors[J]. J Ind Microbiol Biotechnol, 2012, 39: 73-80.
folding pathways in the cell[J]. Molecular Systems Biology, 2014, [30] Chen Y, Sheng J, Jiang T, et al. Transcriptional profiling reveals
5(1): 275-283. molecular basis and novel genetic targets for improved resistance to
[8] Li J R, Yu P. Expression of Cu, Zn-superoxide dismutase gene from multiple fermentation inhibitors in Saccharomyces cerevisiae[J].
Saccharomyces cerevisiae in Pichia pastoris and its resistance to Biotechnology for Biofuels, 2016, 9: 9.
oxidative stress[J]. Applied Biochemistry and Biotechnology, 2007, [31] Yang W, Zhang J, Wang H, et al. Angiotensin Ⅱ downregulates
136(1): 127-139. catalase expression and activity in vascular adventitial fibroblasts
[9] Choi K, Batke S, Szakal B, et al. Concerted and differential actions through an AT1R/ERK1/2-dependent pathway[J]. Mol Cell Biochem,
of two enzymatic domains underlie Rad5 contributions to DNA damage 2011, 358(1/2):21-29.
tolerance[J]. Nucleic Acids Research, 2015, 43(5): 2666-2677. [32] Zhao Xinqing (赵心清), Jiang Rujiao (姜如娇), Li Ning (李宁), et
[10] Petitjean M, Teste M A, Francois J M, et al. Yeast tolerance to al. Improving ethanol tolerance of Saccharomyces cerevisiae
various stresses relies on the trehalose-6P synthase (Tps1) protein, industrial strain by directed evolution of SPT3 [J]. Chin J Biotech (生
not on trehalose[J]. Journal of Biological Chemistry, 2015, 290(26): 物工程学报), 2010, 26(2): 159-164.
16177-16190. [33] Hiroyuki H, Mai M, Hiroshi T. Enhancement of stress tolerance in
[11] Busti S, Mapelli V, Tripodi F, et al. Respiratory metabolism and calorie Saccharomyces cerevisiaeby overexpression of ubiquitin ligase Rsp5
restriction relieve persistent endoplasmic reticulum stress induced by and ubiquitin-conjugating enzymes[J]. Biosci Biotechnol Biochem,
calcium shortage in yeast[J]. Scientific Reports, 2016, 6: 27942. 2006, 70: 2762-2765.
[12] Teixeira M C, Monteiro P, Jain P , et al. The yeastract database: a [34] Shahsavarani H, Sugiyamaa M, Kanekoa Y, et al. Superior
tool for the analysis of transcription regulatory associations in thermotolerance of Saccharomyces cerevisiae for efficient bioethanol
Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2006, 34 fermentation can be achieved by overexpression of RSP5ubiquitin
(Database issue): D446-D451. ligase[J]. Biotechnol Adv, 2012, 30: 1289-1300.
[13] Lam F H, Ghaderi A, Fink G R, et al. Biofuels. Engineering alcohol [35] Qiu Z, Deng Z, Tan H, et al. Engineering the robustness of
tolerance in yeast[J]. Science, 2014, 346(6205): 71-75. Saccharomyces cerevisiae by introducing bifunctional glutathione
[14] Izawa S, Ikeda K, Miki T, et al. Vacuolar morphology of synthase gene[J]. J Ind Microbiol Biotechnol, 2015, 42: 537-542.
Saccharomyces cerevisiae during the process of wine making and [36] Luhe A L, Tan L, Wu J, et al. Increase of ethanol tolerance of
Japanese sake brewing[J]. Applied Microbiology and Biotechnology, Saccharomyces cerevisiae by error-prone whole genome
2010, 88(1): 277-282. amplification[J]. Biotechnology Letters, 2011, 33(5): 1007-1011.
[15] Caspeta L, Chen Y, Ghiaci P, et al. Biofuels. Altered sterol composition [37] Kitichantaropas Y, Boonchird C, Sugiyama M, et al. Cellular
renders yeast thermotolerant[J]. Science, 2014, 346(6205): 75-78. mechanisms contributing to multiple stress tolerance in Saccharomyces
[16] Jia H Y, Sun X Y, Sun H, et al. Intelligent microbial heat-regulating cerevisiae strains with potential use in high-temperature ethanol
engine (IMHeRE) for improved thermo-robustness and efficiency of fermentation[J]. AMB Express, 2016, 6(1): 107.
bioconversion[J]. ACS Synthetic Biology, 2016, 5(4): 312-320. [38] Thompson O A, Hawkins G M, Gorsich S W, et al. Phenotypic
[17] Zhang Y X, Perry K, Vinci V A, et al. Genome shuffling leads to characterization and comparative transcriptomics of evolved
rapid phenotypic improvement in bacteria[J]. Nature, 2002, Saccharomyces cerevisiae strains with improved tolerance to
415(6872): 644-646. lignocellulosic derived inhibitors[J]. Biotechnology for Biofuels,
[18] Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription 2016, 9: 200.
machinery for improved ethanol tolerance and production[J]. [39] Doudna J A, Charpentier E. Genome editing. The new frontier of genome
Science, 2006, 314(5805): 1565-1568. engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096.
[19] Isaacs F J, Carr P A, Wang H H, et al. Precise manipulation of [40] Rauscher B, Heigwer F, Breinig M, et al. Genome CRISPR a
chromosomes in vivo enables genome-wide codon replacement[J]. database for high-throughput CRISPR/Cas9 screens[J]. Nucleic
Science, 2011, 333(6040): 348-353. Acids Research, 2017, 45(Database issue): D679-D686.
[20] Auesukaree C, Koedrith P, Saenpayavai P, et al. Characterization and [41] Wang H, Yang H, Shivalila C S, et al. One-step generation of mice
gene expression profiles of thermotolerant Saccharomyces carrying mutations in multiple genes by CRISPR/Cas-mediated
cerevisiaeisolatesfrom Thai fruits[J]. J Biosci Bioeng, 2012, 114: 144-149. genome engineering[J]. Cell, 2013, 153(4): 910-918.
[21] Sridhar M, Sree N K, Rao L V. Effect of UV radiation on thermotolerance, [42] Ryan O W, Skerker J M, Maurer M J, et al. Selection of chromosomal
ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 DNA libraries using a multiplex CRISPR system[J]. ELife, 2014, 3: e03703.
and VS3 strains[J]. Bioresource Technology, 2002, 83(3): 199-202. [43] Zehua B, Mohammad H R, Pu X, et al. Genome-scale engineering of
[22] Cha Y L, Ana G H, Yang J, et al. Bioethanol production from Miscanthus Saccharomyces cerevisiae with single-nucleotide precision[J]. Nature
using thermotolerant Saccharomyces cerevisiaembc 2 isolated from Biotechnology, 2018. DOI: 10. 1038/nbt. 4132.
the respiration-deficient mutants[J]. Renew Energ, 2015, 80: 259-265. [44] Snoek T, Picca Nicolino M, Van den Bremt S, et al. Large-scale
[23] Shen Naikun(申乃坤), Wang Qingyan (王青艳), Qin Yan (秦艳), et robot-assisted genome shuffling yields industrial Saccharomyces
al. Breeding of a thermotolerant and high ethanol-producing cerevisiae yeasts with increased ethanol tolerance[J]. Biotechnology
Saccharomyces cerevisiae strain by UV-NTG composite protoplast for Biofuels, 2015, 8: 32.