Page 178 - 201906
P. 178

·1184·                            精细化工   FINE CHEMICALS                                  第 36 卷

                 hollow  Li 4Ti 5O 12  microspheres  assembled  byzigzag-like  nanosheets   2018, 35(7): 1216-1220.
                 for high rate lithium-ion batteries[J]. Journal of Power Sources, 2017,   [17]  Park  H,  Song  T,  Han  H,  et al.  Electrospun  Li 4Ti 5O 12  nanofibers
                 340: 263-272.                                     sheathed with conductive TiN/TiO xN y layer as an anode material for
            [9]   Xiao  C  W,  Ding  Y,  Zhang  J  T,  et al.  Li 4xNa xTi 5O 12 with low   high power Li-ion batteries[J]. Journal of Power Sources, 2013, 244:
                 operation  potential  as  anode  for  lithium  ion  batteries[J].  Journal  of   726-730.
                 Power Sources, 2014, 28: 323-329.             [18]  Li  N,  Liang  J,  Wei  D,  et al.  Solvothermal  synthesis  of  micro-
            [10]  Liu Z, Zhang N, Wang Z, et al. Highly dispersed Ag nan-oparticles   nanoscale Cu/Li 4Ti 5O 12 composites for high rate Li-ion batteries[J].
                 (<10  nm)  deposited  on  nanocrystalline  Li 4Ti 5O 12  demonstrating   Electrochimica Acta, 2014, 123: 346-352.
                 high-rate  charge/discharge  capability  for  lithium-ion  battery[J].   [19]  Wang  D,  Zhang  C,  Zhang  Y,  et al.  Synthesis  and  electrochemical
                 Journal of Power Sources, 2012, 205: 479-482.     properties  of  La-doped  Li 4 Ti 5O 12,  as  anode  material  for  Li-ion
            [11]  Zhang X L, Hu G R, Peng Z D. Preparation and effects of Mo-doping   battery[J]. Ceramics International, 2013, 39(5): 5145-5149.
                 on  the  electrochemical  properties  of  spinel  Li 4Ti 5O 12  as  anode   [20]  Guo M, Wang S Q, Ding L X, et al. Tantalum-doped lithium titanate
                 material  for  lithium  ion  battery[J].  Journal  of  Inorganic  Materials,   with  enhanced  performance  for  lithium-ion  batteries[J].  Journal of
                 2011, 26(4): 443-448.                             Power Sources, 2015, 283: 372-380.
            [12]  Guo Min (郭敏). Doping modification study of Li 4Ti 5O 12 as an anode   [21]  Li  Jun  (李军),  Huang  Jiwei  (黄际伟),  Zhou  Yan  (周燕),  et al.
                 material  for  lithium  ion  batteries[D].  Shenzhen:South  China   Synthesis  of  modified  Li 4Ti 5O 12  anode  material  with  electroless
                 University of Technology (南方科技大学), 2016.          plating  nickeland  its  electrochemical  properties[J].  Chinese  Journal
            [13]  Qiu C X, Yuan Z Z, Liu L, et al. Preparation and characterization of   of Rare Metals (稀有金属), 2014, 38(2): 224-229.
                  4+
                 Ge -doping  Li 4Ti 5O 12  anode  material  for  Li-ion  battery  and  its   [22]  Lin C, Lai M O, Lu L, et al. Structure and high rate performance of
                                                                    2+
                 electrochemical  properties[J].  Journal  of  Inorganic  Materials, 2013,   Ni ,  doped  Li 4Ti 5O 12,  for  lithium  ion  battery[J].  Journal  of  Power
                 28(7): 727-732.                                   Sources, 2013, 244(4): 272-279.
            [14]  Qi Y, Huang Y, Jia D, et al. Preparation and characterization of novel   [23]  Liu J,  Song K,  Aken P  A V,  et al.  Self-supported  Li 4Ti 5O 12-C
                 spinel  LiTiO xBr x  anode  materials[J].  Electrochimica  Acta,  2009,   nanotube arrays as high-rate and long-life anode materials for flexible
                 54(21): 4772-4776.                                Li-ion batteries[J]. Nano Letters, 2014, 14(5): 2597-2603.
            [15]  Ma Y, Ding B, Ji G, et al. Carbon-encapsulated F-doped Li 4Ti 5O 12 as   [24]  He Y, Muhetaer A, Li J M, et al. Ultrathin Li 4Ti 5O 12 nanosheet based
                                     +
                 a high rate anode material for Li  batteries[J]. ACS Nano, 2013, 7:   hierarchical  microspheres  for  high-rate  and  long-cycle  life  Li-ion
                 10870-10878.                                      batteries[J]. Advanced Energy Materials, 2017,7(21):1700950.
            [16]  Yu Xiaolin (于小林), Wu Xianming (吴显明), Ding Xinxiong (丁心  [25]  Park  J  S,  Baek  S  H,  Jeong  Y  I,  et al.  Effects  of  a  dopant  on  the
                 雄 ), et al.  Preparation  and  electrochemical  performances  of   electrochemical properties of Li 4Ti 5O 12 as a lithium-ion battery anode
                 Li 4Ti 5O 12-C  composite  materials[J].  Fine  Chemicals  (精细化工),   material[J]. Journal of Power Sources, 2013, 244: 527-531.


            (上接第 1165 页)                                           and Food Chemistry, 2015, 63(13): 3516-3523.
                                                               [18]  Zhao  C,  Liu  Z  Q.  Diaryl-1,2,4-oxadiazole  antioxidants:  Synthesis
            [10]  Ke Yang (柯杨), Teng Longfei (滕龙飞), Hou Haixia (侯海霞). The   and  properties  of  inhibiting  the  oxidation  of  DNA  and  scavenging
                 synthesis of substituted coumarins catalyzed by the composite solid   radicals[J]. Biochimie, 2013, 95(4): 842-849.
                               2-
                 superacid  catalyst  SO 4 /ZrO 2-Al 2O 3-WO 3[J].  Guangdong  Chemical   [19]  Wang R, Liu Z Q. Facile synthesis of furoquinoline and effects on
                 Industry (广东化工), 2017, 44(22): 37-38.             radical-induced oxidation of DNA[J]. Medicinal Chemistry Research,
            [11]  Zhang Yuan (张源), Zhang Jing (张静), Kong Xiangwen (孔祥文).   2013, 22(4): 1563-1569.
                 Study  of  synthesising  4-methyl-7-acetoxycoumarin[J].  Journal  of   [20]  Li G X, Liu Z Q, Luo X Y. Dichloro-4-quinolinol-3-carboxylic acid:
                 Shenyang University of Chemical Technology(沈阳化工学院学报),   synthesis and antioxidant abilities to scavenge radicals and to protect
                 2006, 20 (4): 245-247.                            methyl  linoleate  and  DNA[J].  European  Journal  of  Medicinal
            [12]  Shao  J,  Geacintov  N  E,  Shafirovich  V.  Oxidative  modification  of   Chemistry, 2010, 45(5): 1821-1827.
                 guanine bases initiated by oxyl radicals derived from photolysis of   [21]  Xi G L, Liu Z Q. Antioxidant effectiveness generated by one or two
                 azo compounds[J]. Journal of Physical Chemistry B, 2010, 114(19):
                 6685-6692.                                        phenolic hydroxyl groups in coumarin-substituted dihydropyrazoles
            [13]  Speisky H, Gómez M, Burgos-Bravo F, et al. Generation of superoxide   [J].  European  Journal  of  Medicinal  Chemistry,  2013,  68(12):
                 radicals  by  copper-glutathione  complexes:Redox-consequences   385-393.
                 associated with their interaction with reduced glutathione[J]. Bioorganic   [22]  Xi G L, Liu Z Q. Introducing ferrocene into imidazo[1,2-a]pyridine
                 & Medicinal Chemistry, 2009, 17(5): 1803-1810.     by  Groebke  three-component-reaction  for  scavenging  radicals  and
            [14]  Valko M, Vondrakova D, Lawson M, et al. Metals, oxidative stress   inhibiting DNA oxidation[J]. Tetrahedron, 2015, 71(52): 9602-9610.
                 and neurodegenerative disorders[J]. Molecular & Cellular Biochemistry,   [23]  Gong  X  R,  Xi  G  L,  Liu  Z  Q.  Activity  of  coumarin  oxadiazole
                 2010, 345(1/2): 91-104.                           appended  phenol  in  inhibiting  DNA  oxidation  and  scavenging
            [15]  Janicek  M  F,  Haseltine  W  A,  Henner  W  D.  Malondialdehyde   radical[J]. Tetrahedron Letters, 2015, 56(45): 6257-6261.
                 precursors  in  gamma-irradiated  DNA,  deoxynucleotides  and   [24]  He J H, Li J Z, Liu Z Q. Synthesis of licochalcones and inhibition
                 deoxynucleosides[J].  Nucleic  Acids  Research,  1985,  13(24):   effects on radical-induced oxidation of DNA[J]. Medicinal Chemistry
                 9011-9029.                                        Research, 2013, 22(6): 2847-2854.
            [16]  Sugden K D, Wetterhahn K E. Direct and hydrogen peroxide-induced   [25]  Nabi G, Liu Z Q. Ferrocenyl chalcones: Antioxidants or prooxidants
                 Chromium(Ⅴ)  oxidation  of  deoxyribose  in  single-stranded  and   in  radical-induced  oxidation  of  DNA?[J].  Medicinal  Chemistry
                 double-stranded  calf  thymus  DNA[J].  Chemical  Research  in   Research, 2012, 21(10): 3015-3020.
                 Toxicology, 1997, 10(12): 1397-1406.          [26]  Stojanovic S, Brede O. Elementary reactions of the antioxidant action
            [17]  Xi G L, Liu Z Q. Coumarin-fused-coumarin: antioxidant story from   of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene
                 N,N-dimethylamino and hydroxyl groups[J]. Journal of Agricultural   [J]. Physical Chemistry Chemical Physics, 2002, 4(5): 757-764.
   173   174   175   176   177   178   179   180   181   182   183